Many electrocardiogram (ECG) processors have been widely used for cardiac monitoring. However, most of them have relatively low energy efficiency, and lack configurability in classification leads number and inference algorithm models. A multi-lead ECG coprocessor is proposed in this paper, which can perform efficient ECG anomaly detection. In order to achieve high sensitivity and positive precision of R-peak detection, a method based on zero-crossing slope adaptive threshold comparison is proposed. Also, a one-dimensional convolutional neural network (1-D CNN) based classification engine with reconfigurable processing elements (PEs) is designed, good energy efficiency is achieved by combining filter level parallelism and output channel parallelism within the PE chains with register level data reuse strategy. To improve configurability, a single instruction multiple data (SIMD) based central controller is adopted, which facilitates ECG classification with configurable number of leads and updatable inference models. The proposed ECG coprocessor is fabricated using 55 nm CMOS technology, supporting classification with an accuracy of over 98%. The test results indicate that the chip consumes 62.2 nJ at 100 MHz, which is lower than most recent works. The energy efficiency reaches 397.1 GOPS/W, achieving an improvement of over 40% compared to the reported ECG processors using CNN models. The comparison results show that this design has advantages in energy overhead and configurability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2025.3530790DOI Listing

Publication Analysis

Top Keywords

energy efficiency
12
multi-lead ecg
8
ecg classification
8
cardiac monitoring
8
ecg processors
8
ecg coprocessor
8
ecg
7
classification
5
energy-efficient configurable
4
configurable 1-d
4

Similar Publications

Background: Postoperative haemorrhage following palatine tonsillectomy occurs in 5-14% of cases. Since 2021, our department has used knot suturing with 3-0 Vicryl, and from 2023, continuous suturing with the V-Loc closure device to reduce suture time. While knot suturing is reported to reduce postoperative bleeding and pain, no studies have compared outcomes between different suture methods.

View Article and Find Full Text PDF

Nanofibrous Hydrogel with Highly Salt-Resistant Radial/Vertical-Combined Structure for Efficient Solar Interfacial Evaporation.

Small

March 2025

College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215021, P. R. China.

Hydrogel-based solar interfacial evaporators, featuring various channels such as random, unidirectional, and radial array, are considered effective for seawater desalination owing to their porous structure, lower evaporation enthalpy, and controllable water transport capacity. However, each individual array structure has its own strengths and limitations, influencing water transportation, thermal management, and salt rejection. By combining the benefits of each array configuration into a single evaporator, the evaporation performance can be maximized.

View Article and Find Full Text PDF

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) due to their tunable bandgaps, which allow the active layers to be optimized for artificial light sources. However, significant non-radiative carrier recombination under low-light conditions has limited the full potential of perovskite-based IPVs. To address this challenge, an integration of perylene diimide (PDI)-based sulfobetaines as cathode interlayers (CILs) is proposed and the impact of varying alkyl chain length (from 1,2-ethylene to 1,5-pentylene) between the cationic and the anionic moieties is examined.

View Article and Find Full Text PDF

Electromagnetic materials with adjustable dielectric and magnetic properties are constantly sought after in electronic and industrial fields. In this study, an innovative strategy that customizes anchored Co-based nanoparticles to optimize the electronic behaviors is proposed for the first time, enabling a controllable and high-efficiency evolution of the macroscopic electromagnetic response of Co-based (C/CoT) nanoplates across the X-ray, light in the solar band and gigahertz band. Specifically, in the gigahertz band, the C/Co and C/CoSe nanoplates with high-power loss capabilities can effectively attenuate and convert electromagnetic energy into heat energy, which not only prevents space electromagnetic radiation but also powers energy for various electromagnetic devices such as thermoelectric generators and microwave actuators.

View Article and Find Full Text PDF

Non-Orthogonal Multiple Access (NOMA) is the successive multiple-access methodologies for modern communication devices. Energy Efficiency (EE) is suggested in the NOMA system. In dynamic network conditions, the consideration of NOMA shows high computational complexity that minimizes the EE to degrade the system performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!