An LNP-mRNA vaccine protects fish against rhabdovirus infection.

Vaccine

UMR 5305: Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, 69007 Lyon, France. Electronic address:

Published: March 2025

mRNA vaccines are poised to revolutionize disease prevention, following the approval of their administration to humans against SARS-CoV-2. Although they have been extensively studied for human applications, their potential in the veterinary field has not been explored yet. No mRNA vaccines have yet been reported for fish, despite the urgent need for new vaccines against emerging pathogens in aquaculture. As fish are ectotherms, temperature has an impact on their immune response and on many other biological parameters, including the composition of membrane lipids. It is therefore crucial to identify whether mRNA delivery systems are suitable for in vivo expression in fish for vaccine purposes. In the present study, we developed a proof of concept for mRNA vaccination in rainbow trout, a salmonid, demonstrating the efficacy of current vaccine delivery systems in fish. We used lipid nanoparticles (LNPs), which represent the most advanced delivery technology for mRNA. LNPs use a combination of lipid components that form an encapsulating structure offering protection and promote endosome escape of the mRNA to allow its expression. In vitro assays showed that LNPs are a powerful vehicle for mRNA delivery in fish cells without substantial toxicity. In vivo imaging in adult zebrafish (Danio rerio) demonstrated that intramuscular injection of LNP-formulated egfp mRNA resulted in local expression of eGFP for up to 7 days. An LNP-based mRNA vaccine candidate encoding the viral haemorrhagic septicaemia virus (VHSV) glycoprotein induced neutralizing antibodies in rainbow trout (Oncorhynchus mykiss) and offers almost complete protection against a lethal viral challenge. Our data constitute a first proof of concept of mRNA vaccination in fish, paving the way for new developments in veterinary vaccines for aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2025.126957DOI Listing

Publication Analysis

Top Keywords

mrna
10
mrna vaccines
8
mrna delivery
8
delivery systems
8
proof concept
8
concept mrna
8
mrna vaccination
8
rainbow trout
8
fish
7
lnp-mrna vaccine
4

Similar Publications

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.

View Article and Find Full Text PDF

Rapid clonal expansion and somatic hypermutation contribute to the fate of SARS-CoV-2 broadly neutralizing antibodies.

J Immunol

February 2025

Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.

Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals.

View Article and Find Full Text PDF

The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!