Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism.

Ultrasonics

Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.

Published: February 2025

Diabetic peripheral neuropathy (DPN), as one of the most prevalent complications of diabetes, leads to significant pain and financial burden to patients. Currently, there was no effective treatment for DPN since the glucose control was just a prevention and the drug therapy only relieved the DPN pain. As a non-invasive physical therapy, low-intensity pulsed ultrasound (LIPUS) is utilized in the musculoskeletal and nerve injuries therapy. Studies revealed that LIPUS could regenerate nerves by the mechanical stimulation via oxidative stress pathway, which was thought as the important factor for DPN, and might have potential in the DPN therapy. This study aimed to identify a new therapeutic strategy for DPN using LIPUS. We analyzed the therapy effect and explored the therapeutic mechanism of LIPUS on DPN in mice. This study involved animal experiments and C57BL/6J mice were randomly assigned to DPN model and Sham groups. The DPN model group was fed a high-fat chow diet and injected with streptozotocin (STZ) for 3 consecutive days (40 mg/kg/d), whereas the Sham group was fed a normal diet and injected with an equal volume of sodium citrate buffer. After the DPN model confirmed with the 84-day modeling process, the DPN mice were randomly allocated into the DPN group and the LIPUS group. The LIPUS group underwent ultrasound treatments with a center frequency of 1 MHz, a duty cycle of 20 %, and a spatial average temporal average intensity (I) of 200 mW/cm for 20 min/d, 5 d/w. After the 56-day treatment, all mice were euthanized. LIPUS therapeutic effects were evaluated through measurements of fasting blood glucose (FBG), behavioral tests, oxidative stress tests, morphological analysis, immunofluorescence, and western blot analysis. The results indicated that DPN mice had significantly higher FBG levels (28.77 ± 2.95 mmol/L) compared with sham mice (10.31 ± 1.49 mmol/L). Additionally, DPN mice had significantly lower mechanical threshold (4.13 ± 0.92 g) and higher thermal latency (16.20 ± 2.39 s) compared with the sham mice (7.31 ± 0.83 g, 11.67 ± 1.21 s). After receiving LIPUS treatment, the glucose tolerance tests (GTT) suggested that LIPUS treatment improved glucose tolerance, which was shown by a decrease in the area under the curve (AUC) for glucose in the LIPUS group (AUC = 2452 ± 459.33 min*mmol/L) compared with the DPN group (AUC = 3271 ± 420.90 min*mmol/L). Behavioral tests showed that LIPUS treatment significantly alleviated DPN-induced abnormalities by improving the mechanical threshold from 2.79 ± 0.79 g in the DPN group to 5.50 ± 1.00 g in the LIPUS group, and significantly decreasing thermal latency from 12.38 ± 1.88 s in the DPN group to 9.49 ± 2.31 s in the LIPUS group. Morphological observations revealed that DPN mice had a thinning and irregularly shaped myelin sheath, with 61.04 ± 5.60 % of abnormal nerve fibers in the sciatic nerve in LIPUS group, compared with 49.76 ± 4.88 % of abnormal nerve fibers in the LIPUS-treated group. Additionally, LIPUS treatment increased the mean fluorescence intensity of the associated nerve regeneration protein (i.e., Nf200) from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS group. Western blot and immunofluorescence analysis showed that LIPUS treatment significantly reduced Keap1 expression to 0.04 ± 0.06 relative units, compared with 0.17 ± 0.30 in the DPN group. Furthermore, immunofluorescence analysis revealed that LIPUS treatment promoted the production of its downstream antioxidant protein, heme oxygenase-1 (HO-1), with an increase in the fluorescence intensity from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS-treated group. The fluorescence intensity of Nrf2 was significantly higher in the LIPUS group, increasing from 4.90 ± 0.25 arbitrary units in the DPN group to 15.18 ± 2.13 arbitrary units in the LIPUS-treated group. Additionally, the malondialdehyde (MDA) levels, an indicator of oxidative stress, were significantly reduced in the serum, from 5.40 ± 0.48 nmol/ml in the DPN group to 4.64 ± 0.16 nmol/ml in the LIPUS-treated group, and in the sciatic nerve, from 16.17 ± 5.88 nmol/mg protein to 4.67 ± 2.10 nmol/mg protein, suggesting the oxidative stress was inhibited by LIPUS. This study demonstrated for the first time that LIPUS could relive DPN through anti-oxidative stress process. This study suggests that LIPUS might be a new therapy strategy for DPN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2025.107618DOI Listing

Publication Analysis

Top Keywords

dpn group
36
lipus group
32
dpn
25
lipus treatment
24
arbitrary units
24
group
23
lipus
22
dpn mice
20
oxidative stress
16
lipus-treated group
16

Similar Publications

Background: Distal peripheral neuropathy (DPN) is a prevalent issue among patients with type 2 diabetes mellitus. Despite the widespread use of low-level laser therapy (LLLT) and limited use of Tecar therapy in physiotherapy for diabetics, the synergistic effect of these two interventions in a long-term follow-up has not yet been determined.

Objectives: This study aimed to compare the effects of Tecar therapy and LLLT separately and simultaneously over a 3-month follow-up period on clinical symptoms and health-related quality of life in individuals with type 2 diabetes and DPN.

View Article and Find Full Text PDF

Objectives: There are currently no FDA-approved disease-modifying therapies for diabetic peripheral neuropathy (DPN). We evaluated the effect of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin in Type 2 diabetes mellitus (T2DM) with DPN.

Research Design And Methods: In this prospective, open-label, randomised, controlled study, 40 participants with DPN were randomised to receive add-on 10 mg dapagliflozin OD (Group A) to existing oral antidiabetic drugs (OAD) (n = 22) or continue OADs as a standard of care (Group B) (n = 18).

View Article and Find Full Text PDF

Background: Diabetic peripheral neuropathy (DPN) is a vastly common and bothersome disorder with a clinically challenging course of treatment affecting patients with diabetes. This study aimed to evaluate the efficacy and safety of high dose oral N-acetyl cysteine (NAC) as adjuvant therapy on clinical outcome of DPN.

Methods: A prospective, randomized, parallel, open label, controlled clinical trial.

View Article and Find Full Text PDF

Introduction: The aim of this study was to investigate serum Neurofilament Light polypeptide (NfL) as a biomarker for diabetic polyneuropathy (DPN) in adolescents with type 1 diabetes (T1D). Secondarily, to investigate vitamin B (B) deficiency as a cause for DPN in adolescents with T1D.

Research Design And Methods: Cross-sectional study.

View Article and Find Full Text PDF

Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism.

Ultrasonics

February 2025

Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.

Diabetic peripheral neuropathy (DPN), as one of the most prevalent complications of diabetes, leads to significant pain and financial burden to patients. Currently, there was no effective treatment for DPN since the glucose control was just a prevention and the drug therapy only relieved the DPN pain. As a non-invasive physical therapy, low-intensity pulsed ultrasound (LIPUS) is utilized in the musculoskeletal and nerve injuries therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!