IEEE Trans Pattern Anal Mach Intell
Published: April 2025
Addressing the pervasive challenge of imperfect data in autonomous vehicle (AV) systems, this study pioneers an integrated trajectory prediction model, WAKE, that fuses physics-informed methodologies with sophisticated machine learning techniques. Our model operates in two principal stages: the initial stage utilizes a Wavelet Reconstruction Network to accurately reconstruct missing observations, thereby preparing a robust dataset for further processing. This is followed by the Kinematic Bicycle Model which ensures that reconstructed trajectory predictions adhere strictly to physical laws governing vehicular motion. The integration of these physics-based insights with a subsequent machine learning stage, featuring a Quantum Mechanics-Inspired Interaction-aware Module, allows for sophisticated modeling of complex vehicle interactions. This fusion approach not only enhances the prediction accuracy but also enriches the model's ability to handle real-world variability and unpredictability. Extensive tests using specific versions of MoCAD, NGSIM, HighD, INTERACTION, and nuScenes datasets featuring missing observational data, have demonstrated the superior performance of our model in terms of both accuracy and physical feasibility, particularly in scenarios with significant data loss-up to 75% missing observations. Our findings underscore the potency of combining physics-informed models with advanced machine learning frameworks to advance autonomous driving technologies, aligning with the interdisciplinary nature of information fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2025.3529259 | DOI Listing |
J Sci Food Agric
March 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
Background: White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model.
View Article and Find Full Text PDFFront Immunol
March 2025
Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Background: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with better prognostic outcomes.
View Article and Find Full Text PDFRSC Adv
March 2025
School of Humanities and Management, Heilongjiang University of Chinese Medicine Harbin PR China.
Wearable sensors have emerged as a transformative technology, enabling real-time monitoring and advanced functionality in various fields, including healthcare, human-machine interaction, and environmental sensing. This review provides a comprehensive overview of the latest advancements in wearable sensor technologies, focusing on innovations in sensor design, material flexibility, and integration with machine learning. We explore the feasibility of wearable electronics in achieving high-performance, flexible devices and discuss their potential to enhance human-machine interactions through intelligent data processing and decision-making.
View Article and Find Full Text PDFFront Mol Biosci
February 2025
Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Background: Numerous studies have reported that dysregulation of fatty acid metabolic pathways is associated with the pathogenesis of vitiligo, in which arachidonic acid metabolism (AAM) plays an important role. However, the molecular mechanisms of AAM in the pathogenesis of vitiligo have not been clarified. Therefore, we aimed to identify the biomarkers and molecular mechanisms associated with AAM in vitiligo using bioinformatics methods.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
March 2025
Purdue University, School of Electrical and Computer Engineering, Video and Image Processing Laboratory, West Lafayette, Indiana, United States.
Purpose: The advancement of high-content optical microscopy has enabled the acquisition of very large three-dimensional (3D) image datasets. The analysis of these image volumes requires more computational resources than a biologist may have access to in typical desktop or laptop computers. This is especially true if machine learning tools are being used for image analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.