A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffusion Model-Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment. | LitMetric

Existing free-energy guided No-Reference Image Quality Assessment (NR-IQA) methods continue to face challenges in effectively restoring complexly distorted images. The features guiding the main network for quality assessment lack interpretability, and efficiently leveraging high-level feature information remains a significant challenge. As a novel class of state-of-the-art (SOTA) generative model, the diffusion model exhibits the capability to model intricate relationships, enhancing image restoration effectiveness. Moreover, the intermediate variables in the denoising iteration process exhibit clearer and more interpretable meanings for high-level visual information guidance. In view of these, we pioneer the exploration of the diffusion model into the domain of NR-IQA. We design a novel diffusion model for enhancing images with various types of distortions, resulting in higher quality and more interpretable high-level visual information. Our experiments demonstrate that the diffusion model establishes a clear mapping relationship between image reconstruction and image quality scores, which the network learns to guide quality assessment. Finally, to fully leverage high-level visual information, we design two complementary visual branches to collaboratively perform quality evaluation. Extensive experiments are conducted on seven public NR-IQA datasets, and the results demonstrate that the proposed model outperforms SOTA methods for NR-IQA. The codes will be available at https://github.com/handsomewzy/DiffV2IQA.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3523800DOI Listing

Publication Analysis

Top Keywords

quality assessment
16
diffusion model
16
image quality
12
high-level visual
12
no-reference image
8
quality
7
model
7
visual
6
diffusion
5
image
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!