Decoding natural hand movements using Movement-Related Cortical Potentials (MRCPs) features is crucial for the natural control of neuroprosthetics. However, current research has primarily focused on the characteristics of individual channels or on brain networks within a single frequency or time segment, overlooking the potential of brain networks across multiple time-frequency domains. To address this problem, our study investigates the application of multilayer brain networks (MBNs) in decoding natural hand movements and kinematic parameters, using a combination of MRCPs features and MBNs metrics. Based on grasp taxonomy, we selected four natural movements for our study: Large Diameter (LD), Sphere 3-Finger (SF), Precision Disk (PD), and Parallel Extension (PE), each incorporating two levels of speed and force parameters. The results demonstrate that a combination of MRCPs features and MBNs metrics can successfully decode not only the types of movements and kinematic parameters but also differentiate between different grasp taxonomy characteristics, such as the number of fingers exerting force and the type of grasp. In terms of movement type, we achieved a peak four-class accuracy of 60.56%. For grasp type and number of fingers exerting force, binary classification peak accuracies reached 79.25% and 79.28%, respectively. In the case of kinematic parameters, the Precision Disk movement exhibited the highest binary classification peak accuracy at 84.65%. Moreover, our research also found the changes and patterns in brain region connectivity across both time and frequency domains. We believe that our research highlights the potential of MBNs to enhance the functionality of Brain-Computer Interface (BCI) systems for more intuitive control mechanisms and contributes valuable insights into the brain's operational mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2024.3519348DOI Listing

Publication Analysis

Top Keywords

brain networks
16
kinematic parameters
16
decoding natural
12
natural hand
12
hand movements
12
movements kinematic
12
mrcps features
12
multilayer brain
8
combination mrcps
8
features mbns
8

Similar Publications

Parkinson's disease is characterized, in part, by hypoactivity of direct pathway inhibitory projections from striatum to the globus pallidus internus (GPi) and indirect pathway inhibitory projections from globus pallidus externus (GPe) to the subthalamic nucleus (STN). In people with Parkinson's disease (n=32), we explored the potential use of intracranial stimulation for eliciting long-term potentiation (LTP) of these underactive pathways to produce improvement of symptoms that persists beyond stimulation cessation. During GPi deep brain stimulation (DBS) surgery, we found strong evidence (p<.

View Article and Find Full Text PDF

Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.

View Article and Find Full Text PDF

Background: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity.

View Article and Find Full Text PDF

This study investigates the relationship between resting-state functional magnetic resonance imaging (rs-fMRI) topological properties and synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) synaptic density (SD) in late-life depression (LLD). 18 LLD patients and 33 healthy controls underwent rs-fMRI, 3D T1-weighted MRI, and 11C-UCB-J PET scans to assess SD. The rs-fMRI data were utilized to construct weighted networks for calculating four global topological metrics, including clustering coefficient, characteristic path length, global efficiency, and small-worldness, and six nodal metrics, including nodal clustering coefficient, nodal characteristic path length, nodal degree, nodal strength, local efficiency, and betweenness centrality.

View Article and Find Full Text PDF

Objective: To enable fast and stable neonatal brain MR imaging by integrating learned neonate-specific subspace model and model-driven deep learning.

Methods: Fast data acquisition is critical for neonatal brain MRI, and deep learning has emerged as an effective tool to accelerate existing fast MRI methods by leveraging prior image information. However, deep learning often requires large amounts of training data to ensure stable image reconstruction, which is not currently available for neonatal MRI applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!