A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Spatio-temporal Hub Identification in Brain Networks by Learning Dynamic Graph Embedding on Grassmannian Manifolds. | LitMetric

Mounting evidence has revealed that functional brain networks are intrinsically dynamic, undergoing changes over time, even in the rest-state environment. Notably, recent studies have highlighted the existence of a small number of critical brain regions within each functional brain network that exhibit a flexible role in adapting the geometric pattern of brain connectivity over time, referred to as "temporal hub" regions. Therefore, the identification of these temporal hubs becomes pivotal for comprehending the mechanisms that underlie the dynamic evolution of brain connectivity. However, existing spatio-temporal hub identification methods rely on static network-based approaches, wherein each temporal hub region is independently inferred from individual time-segmented networks without considering their temporal consistency and consequently fails to align the evolution of hubs with the dynamic changes in brain states. To address this limitation, we propose a novel spatio-temporal hub identification method that fully leverages dynamic graph embedding to distinguish temporal hubs from peripheral nodes, in which dynamic graph embeddings are learned from both spatial and temporal dimensions. Specifically, to preserve the temporal consistency of evolving networks, we model the dynamic graph embedding as a physical model of time, where the network-to-network transition is mathematically expressed as a total variation of dynamic graph embedding with respect to time. Furthermore, a Grassmannian manifold optimization scheme is introduced to enhance graph embedding learning and capture the time-varying topology of brain networks. Experimental results on both synthetic and real fMRI data demonstrate superior temporal consistency in hub identification, surpassing conventional approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3502545DOI Listing

Publication Analysis

Top Keywords

dynamic graph
20
graph embedding
20
hub identification
16
spatio-temporal hub
12
brain networks
12
temporal consistency
12
novel spatio-temporal
8
brain
8
dynamic
8
functional brain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!