Immunomechanobiology, the study of how physical forces influence the behavior and function of immune cells, is a rapidly growing area of research. It is becoming increasingly recognized that mechanical stimuli, such as fluid shear forces, are a critical determinant of immune cell regulation. In this review, we discuss the principles and significance of various mechanical forces present within the human body, with a focus on fluid shear flow and its impact on immune cell activation and function. Moreover, we discuss engineering approaches used to study immune cell mechanobiology, and their implications in health and diseases such as cancer, autoimmune disorders, and infectious disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/RBME.2024.3505073DOI Listing

Publication Analysis

Top Keywords

fluid shear
12
immune cell
12
activation function
8
function immune
8
immune cells
8
immune
5
immunomechanobiology engineering
4
engineering activation
4
cells mechanical
4
mechanical signal
4

Similar Publications

The interaction between integrin αβ and fibronectin enables tumor cell adherence to endothelial layers under diverse hydrodynamic blood flow conditions, particularly in low shear stress regions. Understanding the mechanical binding characteristics between integrin αβ and fibronectin under different hydrodynamic environments can provide insights into tumor cell invasion and proliferation. Here, the adhesive behavior of fibronectin-functionalized microspheres on integrin αβ-coated substrates under various wall fluid shear forces (0.

View Article and Find Full Text PDF

The transthyretin (TTR) tetramer, assembled as a dimer of dimers, transports thyroxine and retinol binding protein in blood plasma and cerebrospinal fluid. Aggregation of wild type (WT) or pathogenic variant TTR leads to transthyretin amyloidosis, which is associated with neurodegenerative and cardiac disease. The trigger for TTR aggregation under physiological conditions is unknown.

View Article and Find Full Text PDF

This study aimed to characterize the altered hemodynamics and wall mechanics in ascending thoracic aortic aneurysms (ATAA) by employing fully coupled two-way fluid-structure interaction (FSI) analyses. Our FSI models incorporated hyperelastic wall mechanical properties, prestress, and patient-specific inlet velocity profiles (IVP) extracted from 4D flow magnetic resonance imaging (MRI). By performing FSI analyses on 7 patient-specific ATAA models and 6 healthy aortas, the primary objective of the study was to compare hemodynamic and biomechanical features in ATAA versus healthy controls.

View Article and Find Full Text PDF

Assay of cardiopulmonary bypass system for porcine alveolar macrophages removing GFP- from erythrocyte surfaces.

PeerJ

March 2025

Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong City, Shanxi Province, China.

While it is established that complement receptor molecules on the surface of erythrocytes are crucial for the clearance of immune complexes in the body, the molecular mechanisms underlying the interaction between macrophages and erythrocytes in pigs remain inadequately understood. Consequently, we built a detection system with a closed-circulation flow chamber and a constant flow pump. Additionally, we optimized parameters including system flow velocity and fluid shear force.

View Article and Find Full Text PDF

Spinal cord injury (SCI) initiates a complex cascade of chemical and biophysical phenomena that result in tissue swelling, progressive neural degeneration, and formation of a fluid-filled cavity. Previous studies show fluid pressure above the spinal cord (supraspinal) is elevated for at least 3 days after injury and contributes to a phase of damage called secondary injury. Currently, it is unknown how fluid forces within the spinal cord itself (interstitial) are affected by SCI and if they contribute to secondary injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!