A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal Structure Prediction Meets Artificial Intelligence. | LitMetric

Crystal Structure Prediction Meets Artificial Intelligence.

J Phys Chem Lett

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Published: March 2025

Crystal structure prediction (CSP) represents a fundamental research frontier in computational materials science and chemistry, aiming to predict thermodynamically stable periodic structures from given chemical compositions. Traditional methods often face challenges such as high computational costs and local minima trapping. Recently, artificial intelligence methods, represented by generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models, and large language models (LLMs), have revolutionized the traditional prediction paradigm. These computational frameworks efficiently extract chemical rules and structural features from crystal databases, significantly reducing computational costs while maintaining prediction accuracy. This Perspective systematically evaluates the advantages and limitations of various generative models, explores their synergies with conventional approaches, and discusses their future prospects in accelerating materials discovery and development, providing new insights for future research directions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03727DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
structure prediction
8
artificial intelligence
8
computational costs
8
prediction
4
prediction meets
4
meets artificial
4
intelligence crystal
4
prediction csp
4
csp represents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!