Hydrogen sulfide (HS) is an important respiratory biomarker of many diseases, and thus, developing HS gas sensors with low detection limits at low operating temperatures is essential for the early diagnosis of diseases in low-resource environments. Although lead halide perovskites have unique electronic and optical properties, the high toxicity of lead has prompted the development of alternative materials. In this study, CsAgBiCl was synthesized using a simple method. The sensor based on CsAgBiCl showed excellent sensing of HS gas at room temperature over a wide humidity range, with high response (90.6 vs 10 ppm of HS) and fast response speed (99.6 s vs 400 ppb HS). The detection limit was low (5 ppb HS), and the selectivity at room temperature was excellent. Small changes in HS concentration (<100 ppb) were detected as a fully reversible resistance signal. Additionally, sum frequency vibration spectroscopy and DFT calculations showed that the high gas sensitivity was attributed to the physical adsorption of HS at Cl vacancies on the surface of CsAgBiCl, as well as efficient charge transfer. This work provides an avenue for developing high-performance gas sensors based on nontoxic, wide band gap, halide double perovskite semiconductors operating at room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c03532 | DOI Listing |
Langmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFNano Lett
March 2025
College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
University of Eastern Finland, Deaprtment of Chemistry, Yliopistokatu 7, 80101, Joensuu, FINLAND.
We studied a family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal centre. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Chemistry and Environment, Changchun University of Science and Technology, Changchun 130022, China.
Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.
View Article and Find Full Text PDFPlant Physiol
March 2025
School of Life Sciences, Peking University, Beijing 100871, China.
The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The four large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The four small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!