This paper deals with the computational modeling of biological dynamics in soil using an exact micro-scale pore space description from 3D Computed Tomography (CT) images. Within this context, computational costs and storage requirements constitute critical factors for running simulations on large datasets over extended periods. In this research, we represent the pore space by a graph of voxels (Voxel Graph-Based Approach, VGA) and model transport in fully saturated conditions (two-phase system) using Fick's law and coupled diffusion with biodegradation processes to simulate microbial decomposition in soil. To significantly decrease the computational time of our approach, the diffusion model is solved by means of Euler discretization schemes, along with parallelization strategies. We also tested several numerical strategies, including implicit, explicit, synchronous, and asynchronous schemes. To validate our VGA, we compare it with LBioS, a 3D model that integrates diffusion (via the Lattice Boltzmann method) with biodegradation, and Mosaic, a Pore Network Geometrical Modelling (PNGM) which represents the pore space using geometrical primitives. Our method yields result similar to those of LBioS in a quarter of the computing time. While slower than Mosaic, it is more accurate and requires no calibration. Additionally, we show that our approach can improve PNGM-based simulations by using a machine-learning approach to approximate diffusional conductance coefficients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875386PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313853PLOS

Publication Analysis

Top Keywords

pore space
12
microbial decomposition
8
decomposition soil
8
voxel-based approach
4
approach simulating
4
simulating microbial
4
soil comparison
4
comparison lbm
4
lbm improvement
4
improvement morphological
4

Similar Publications

and degradation studies of a dual medical-grade scaffold design for guided soft tissue regeneration.

Biomater Sci

March 2025

Regenerative Medicine Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.

Biodegradable scaffolds with tailored mechanical and structural properties are essential for scaffold-guided soft tissue regeneration (SGSTR). SGSTR requires scaffolds with controllable degradation and erosion characteristics to maintain mechanical and structural integrity and strength for at least four to six months. Additionally, these scaffolds must allow for porosity expansion to create space for the growing tissue and exhibit increased mechanical compliance to match the properties of the newly formed tissue.

View Article and Find Full Text PDF

Photoisomerization-mediated tunable pore size in metal organic frameworks for U(VI)/V(V) selective separation.

Nat Commun

March 2025

Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China.

Selective extracting uranium from seawater is quite challenging, particularly the presence of vanadium, which poses a significant obstacle for most amidoxime absorbents. Adsorbents with size-matched pores and coordination environment can improve the uranium selectivity but usually deteriorate the adsorption capacity. Herein, a dynamically matched spatial coordination strategy is proposed to improve the performance of uranium extraction.

View Article and Find Full Text PDF

We report two three-dimensional metal-organic frameworks constructed from Fe3+ and the ligand, 2,5-furandicarboxylate (FDC) that can be derived from biomass. One contains an unprecedented infinite-rod-shaped building unit, and the other is the first crystalline framework of FDC that contains solely iron in the metal nodes. The materials are formed as microcrystals and their structures determined using 3D-electron diffraction with the bulk confirmed by powder XRD.

View Article and Find Full Text PDF

Hierarchical porous metal-organic frameworks (HP-MOFs) have attracted considerable attention because of their hierarchical pores, which can address the slow mass transfer and less exposure of active sites in pristine microporous MOFs. Although several preparation methods have been developed to date, a large-scale technique for the synthesis of HP-MOFs is still lacking. In this study, we report a novel method for the large-scale synthesis of HP-HKUST-1 based on liquid-assisted spiral gas-solid two-phase flow (LA-S-GSF).

View Article and Find Full Text PDF

The bacterial envelope plays a critical role in maintaining essential cellular functions by selectively regulating import and export. The selectivity of this envelope can restrict the utilisation of externally provided compounds, thereby restricting the functional space of cellular engineering. This study systematically investigates the potential of large pore outer membrane proteins (OMPs) to enhance outer membrane permeability for diverse challenging compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!