Context: Anthracycline anticancer antibiotics from Streptomyces peucetius show high affinity for nucleobases. This study uses quantum mechanical density functional theory (DFT) to investigate interactions between doxorubicin (DOX) tautomers and the guanine-cytosine (GC) base pair. Intermolecular distances and interaction energies reveal structural relationships and stabilization. Interaction energy studies show that DOX-GC has greater binding affinity and greater stability in the aqueous phase as compared to that in gaseous phase. Interestingly, the tautomer which show greater affinity for GC in the gas phase is different from the one in the aqueous phase. Reduced density gradient (RDG) scatter plots and quantum theory of atoms in molecules (QTAIM) confirm the presence of hydrogen bonds and its strength. Natural bond orbital (NBO) analysis elucidates donor-acceptor orbital interactions. These findings provide an understanding of the intermolecular interactions between DOX tautomers and the GC base pair, which is likely to provide insight into the molecular basis for DOX's anticancer activity and therapeutic efficacy.
Methods: DFT calculations were performed using the B3LYP functional with a 6-31G(d,p) basis set in the Gaussian 09 package, including solvent effects through the integral equation formalism polarizable continuum model (IEF-PCM). Topological analysis and quantum theory of atoms in molecules (QTAIM) studies were conducted using the Multiwfn program, while non-covalent interactions were analysed using visual molecular dynamics (VMD) software.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-025-06331-w | DOI Listing |
Nanomaterials (Basel)
March 2025
The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
April 2025
Protein Structure Function Research Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
Three multicomponent systems, namely, 2,4-diamino-6-phenyl-1,3,5-triazine-nicotinic acid (DAPT-NA), CHN·CHNO, (I), 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen malonate (DAPT-MMA), CHN·CHO, (II), and 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen (+)-dibenzoyl-D-tartarate (DAPT-DBTA), CHN·CHO, (III), have been synthesized and characterized via single-crystal X-ray diffraction, and their supramolecular interactions have been analysed. The formation of cocrystal (I) and salts (II) and (III) was confirmed through the widening of the C-N-C bond angle of the triazine moiety of 2,4-diamino-6-phenyl-1,3,5-triazine and the difference in the C-O bond distances between the carboxyl and carboxylate groups of the respective carboxylic acids. Cocrystal (I) and salt (II) form robust homomeric and heteromeric R(8) ring motifs through primary acid-base interactions and complementary base pairing.
View Article and Find Full Text PDFFEBS J
March 2025
Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Mexico.
Reactive oxygen species (ROS) generate DNA lesions that alter genome integrity. Among those DNA lesions, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) is particularly mutagenic. 8-oxodG efficiently incorporates deoxycytidine monophosphate (dCMP) and deoxyadenosine monophosphate (dAMP) via base pairing mediated by its anti and syn conformations, respectively.
View Article and Find Full Text PDFBiochemistry
March 2025
Graduate School of Advanced Engineering, Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino , Chiba275-0016, Japan.
Small compounds targeting RNAs are recognized as a promising modality in drug discovery. We have found that a fluoroquinolone derivative, KG022, binds to RNAs with single-bulged residues. It has been demonstrated by H NMR that KG022 binds to RNAs with a bulged G or C and a GC or AU base pair at the 3' adjacent to the bulged residues.
View Article and Find Full Text PDFPest Manag Sci
March 2025
Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
Background: The melon fly, Zeugodacus cucurbitae (Coquillett), is a significant pest of fruit and vegetable crops. In the physiological processes of insects, N-β-phenylalanine dopamine synthase (ebony) plays a crucial role in insect physiology, with its activity depending on the interaction between dopamine and β-alanine. However, our understanding of ebony's specific biological functions of in melon flies remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!