Objective: To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.

Methods: The study utilized a dataset of 204 images (102 spiral and 102 wave) from PD patients and healthy subjects. The images were preprocessed using the Histogram of Oriented Gradients (HOG) descriptor and augmented to increase dataset diversity. The DNN model was designed with an input layer, three convolutional layers, two max-pooling layers, two dropout layers, and two dense layers. The model was trained and evaluated using metrics such as accuracy, sensitivity, specificity, and loss. The DNN model was compared with nine ML models (random forest, logistic regression, AdaBoost, k-nearest neighbor, gradient boost, naïve Bayes, support vector machine, decision tree) and two DL models (convolutional neural network, DenseNet-201).

Results: The DNN model outperformed all other models in diagnosing PD from handwritten spiral and wave images. On spiral images, the DNN model achieved accuracies of 41.24% over naïve Bayes, 31.24% over decision tree, and 27.9% over support vector machine. On wave images, the DNN model achieved accuracies of 40% over naïve Bayes, 36.67% over decision tree, and 30% over support vector machine. The DNN model demonstrated significant improvements in sensitivity and specificity compared to other models.

Conclusions: The DNN model significantly improves the accuracy of PD diagnosis using handwritten spiral and wave images, outperforming several ML and DL models. This approach offers a promising diagnostic tool for early PD detection and provides a foundation for future work to incorporate additional features and enhance detection accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-025-00017-3DOI Listing

Publication Analysis

Top Keywords

dnn model
32
wave images
20
handwritten spiral
16
spiral wave
16
naïve bayes
12
support vector
12
vector machine
12
decision tree
12
model
10
parkinson's disease
8

Similar Publications

Breast cancer is the most prevalent cancer among women and poses a significant global health challenge due to its association with uncontrolled cell proliferation. Artificial intelligence (AI) integration into medical practice has shown promise in boosting diagnosis accuracy and treatment protocol optimisation, thus contributing to improved survival rates globally. This paper presents a comprehensive analysis utilizing the Wisconsin Breast Cancer dataset, comprising data from 569 patients and 30 attributes.

View Article and Find Full Text PDF
Article Synopsis
  • Advancements in AI and ML are transforming the medical field, enhancing patient care and disease modeling, but challenges like data variability and class imbalance hinder optimal predictive performance.
  • A new AI framework combining Gradient Boosting Machines and Deep Neural Networks was tested on two datasets, showing better results in accuracy metrics compared to traditional models, including achieving an AUROC of 0.96 on the UK Biobank dataset.
  • The framework not only demonstrated superior accuracy but also trained quickly, making it well-suited for real-time clinical applications, with future enhancements aimed at improving scalability and interpretability for broader use.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive and chronic neurodegenerative disorder of the central nervous system, characterized by behavioral and dysexecutive deficits. Its pathogenesis is closely associated with the intestinal flora. This study aimed to explore the enterotypes in AD by identifying key bacteria through machine learning and species co-occurrence network analysis.

View Article and Find Full Text PDF

This study used Xinjiang native "medicinal and food dual-use" resource mulberries as raw material, and optimized the extraction process of mulberries anthocyanins by enzyme-ultrasound-assistance through the establishment of a response surface model (RSM) and deep neural network model (DNN). A single-factor-Box-Behnken experiment was conducted to investigate the effects of pectinase dosage, enzymatic hydrolysis time, ultrasonic temperature, ultrasonic time, solvent concentration, and solid-liquid ratio on the extraction rates of total anthocyanins (TAC), and cyanidin-3-O-glucoside (C3G), cyanidin-3-O-rutinoside (C3R) two anthocyanin compounds, and the comprehensive evaluation index was used as a reference to obtain the optimal extraction conditions. The results show that both the RSM and DNN models could predict accurately, but by comparing the coefficient of determination (R) of the two models, it was found that the DNN model (R = 0.

View Article and Find Full Text PDF

Gait abnormalities are common in the older population owing to aging- and disease-related changes in physical and neurological functions. Differentiating the causes of gait abnormalities is challenging because various abnormal gaits share a similar pattern in older patients. Herein, we propose a deep neural network (DNN) model to classify disease-specific gait patterns in older adults using commercialized instrumented insoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!