Objective: To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.
Methods: The study utilized a dataset of 204 images (102 spiral and 102 wave) from PD patients and healthy subjects. The images were preprocessed using the Histogram of Oriented Gradients (HOG) descriptor and augmented to increase dataset diversity. The DNN model was designed with an input layer, three convolutional layers, two max-pooling layers, two dropout layers, and two dense layers. The model was trained and evaluated using metrics such as accuracy, sensitivity, specificity, and loss. The DNN model was compared with nine ML models (random forest, logistic regression, AdaBoost, k-nearest neighbor, gradient boost, naïve Bayes, support vector machine, decision tree) and two DL models (convolutional neural network, DenseNet-201).
Results: The DNN model outperformed all other models in diagnosing PD from handwritten spiral and wave images. On spiral images, the DNN model achieved accuracies of 41.24% over naïve Bayes, 31.24% over decision tree, and 27.9% over support vector machine. On wave images, the DNN model achieved accuracies of 40% over naïve Bayes, 36.67% over decision tree, and 30% over support vector machine. The DNN model demonstrated significant improvements in sensitivity and specificity compared to other models.
Conclusions: The DNN model significantly improves the accuracy of PD diagnosis using handwritten spiral and wave images, outperforming several ML and DL models. This approach offers a promising diagnostic tool for early PD detection and provides a foundation for future work to incorporate additional features and enhance detection accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-025-00017-3 | DOI Listing |
Breast cancer is the most prevalent cancer among women and poses a significant global health challenge due to its association with uncontrolled cell proliferation. Artificial intelligence (AI) integration into medical practice has shown promise in boosting diagnosis accuracy and treatment protocol optimisation, thus contributing to improved survival rates globally. This paper presents a comprehensive analysis utilizing the Wisconsin Breast Cancer dataset, comprising data from 569 patients and 30 attributes.
View Article and Find Full Text PDFJ Transl Med
March 2025
Unit for Data Science and Computing, North-West University, 11 Hofman Street, Potchefstroom, 2520, South Africa.
J Transl Med
March 2025
Department of Anesthesiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Background: Alzheimer's disease (AD) is a progressive and chronic neurodegenerative disorder of the central nervous system, characterized by behavioral and dysexecutive deficits. Its pathogenesis is closely associated with the intestinal flora. This study aimed to explore the enterotypes in AD by identifying key bacteria through machine learning and species co-occurrence network analysis.
View Article and Find Full Text PDFFood Chem
March 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830017, China. Electronic address:
This study used Xinjiang native "medicinal and food dual-use" resource mulberries as raw material, and optimized the extraction process of mulberries anthocyanins by enzyme-ultrasound-assistance through the establishment of a response surface model (RSM) and deep neural network model (DNN). A single-factor-Box-Behnken experiment was conducted to investigate the effects of pectinase dosage, enzymatic hydrolysis time, ultrasonic temperature, ultrasonic time, solvent concentration, and solid-liquid ratio on the extraction rates of total anthocyanins (TAC), and cyanidin-3-O-glucoside (C3G), cyanidin-3-O-rutinoside (C3R) two anthocyanin compounds, and the comprehensive evaluation index was used as a reference to obtain the optimal extraction conditions. The results show that both the RSM and DNN models could predict accurately, but by comparing the coefficient of determination (R) of the two models, it was found that the DNN model (R = 0.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2025
Gait abnormalities are common in the older population owing to aging- and disease-related changes in physical and neurological functions. Differentiating the causes of gait abnormalities is challenging because various abnormal gaits share a similar pattern in older patients. Herein, we propose a deep neural network (DNN) model to classify disease-specific gait patterns in older adults using commercialized instrumented insoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!