Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications.

Neurochem Res

CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Published: March 2025

NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876243PMC
http://dx.doi.org/10.1007/s11064-025-04346-6DOI Listing

Publication Analysis

Top Keywords

nmda receptor
16
nmda receptors
12
receptor subunits
12
post-translational modifications
8
modifications nmda
8
function plasticity
8
post-translational modification
8
nmda
7
receptors
6
subunits
5

Similar Publications

Long-term potentiation (LTP) is proposed to be the molecular mechanism underlying learning and memory in the brain. A key event for LTP is the influx of calcium into post-synaptic neurons via multiple ion channel control systems. One such system involves N-methyl-D-aspartate receptors (NMDARs), which were originally believed to be essential for LTP and new learning.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles.

View Article and Find Full Text PDF

The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage.

View Article and Find Full Text PDF

Current evidence for the role of rapid-acting antidepressants (RAAD) in bipolar depression? A perspective and plan for action.

Biol Psychiatry

March 2025

Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.

After decades of limited progress in depression treatment, recent advancements have sparked renewed interest in developing novel antidepressants, particularly rapid-acting antidepressants (RAADs). Despite these promising developments, there remains a significant gap in research on bipolar depression. While several antipsychotics have been investigated for their efficacy in bipolar depression due to the reduced risk of mania induction, research on RAADs, such as (es)ketamine, remains scarce despite their demonstrated safety and effectiveness.

View Article and Find Full Text PDF

Postinfectious, diarrhea-predominant, irritable bowel syndrome (PI-IBS-D) is difficult to treat owing to its unknown pathophysiology. Extracellular vesicles (EVs) derived from human colon tissue and long noncoding RNAs (lncRNAs), such as growth arrest-specific 5 (GAS5), may play key roles in the pathophysiology of PI-IBS-D. To determine whether altered colonic EV lncRNA signaling leads to gastrointestinal dysfunction and heightened visceral nociception in patients with PI-IBS-D via the GAS5/miR-23ab/NMDA NR2B axis, we conducted translational studies, including those on (a) the role of colonic EV lncRNAs in patients with PI-IBS-D, human colonoids, and PI-IBS-D tissues; (b) i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!