A smartphone-integrated colorimetric sensor is introduced for the rapid and simultaneous detection of kanamycin (KAN) and oxytetracycline (OTC). This sensor relies on the peroxidase-mimicking activity of Fe/Zr Bi-metallic organic frameworks (UIO-66(Fe/Zr)-NH). This Bi-metallic MOF can facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB). Consequently, Fe/Zr MOF was utilized for the detection of KAN and OTC under optimized conditions. In the presence of KAN and OTC, the interaction between TMB and HO is inhibited, resulting in varying colorimetric responses. The approach accurately measured KAN and OTC, with detection limits as low as 0.44 and 6.86 nM, respectively. To achieve real-time and portable analysis even in harsh conditions, the proposed sensor was integrated with hydrogel-assisted smartphone technology thereby eliminating the need for expensive and cumbersome laboratory-based testing apparatus. Furthermore, the sensor was successfully used for real water sample analysis, with good recovery results. The proposed sensor provides a quick, visual, and highly sensitive approach for the simultaneous and accurate determination of KAN and OTC residues in polluted water, even at trace quantities. This study advances the application of MOF-based nanozymes in environmental monitoring, while also offering extensive opportunities for use in other fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-025-07057-5 | DOI Listing |
Mikrochim Acta
March 2025
Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid and simultaneous detection of kanamycin (KAN) and oxytetracycline (OTC). This sensor relies on the peroxidase-mimicking activity of Fe/Zr Bi-metallic organic frameworks (UIO-66(Fe/Zr)-NH). This Bi-metallic MOF can facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFMikrochim Acta
November 2018
CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
An aptamer based assay is presented for the determination of the antibiotics oxytetracycline (OTC) and kanamycin (KAN). Magnetic beads were applied for separation, and gold nanoparticles (AuNPs) for signal amplification. DNA aptamers against OTC and KAN were firstly designed.
View Article and Find Full Text PDFTalanta
December 2016
Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000, PR China.
An ultrasensitive electrochemical aptasensor for simultaneous detection of oxytetracycline (OTC) and kanamycin (KAN) has been developed based on metal ions doped metal organic frame materials (MOFs) as signal tracers and RecJ exonuclease-catalyzed targets recycling amplification. The aptasensor consists of capture beads (the anti-single-stranded DNA Antibody, as anti-ssDNA Ab, labeled on Dynabeads) and nanoscale MOF (NMOF) based signal tracers (simplified as Apts-MNM, the NMOF labeled with metal ions and the aptamers). Particularly, the MOF (UiO-66-NH), with large internal surface areas, ultrahigh porosity and abundant amine groups in the pores, was employed as substrates to carry plenty of metal ions (Pb or Cd) and label aptamers of OTC or KAN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!