This study investigates the interaction of solid lipid nanoparticles (SLNs) with the transport protein bovine serum albumin (BSA) in terms of thermodynamic signatures, employing both spectroscopic and calorimetric techniques. When nanoparticles are exposed to biological media, proteins are adsorbed on their surfaces, leading to protein corona formation. Therefore, controlling the formation of the protein corona is essential for therapeutic efficacy. Although SLNs have previously been explored solely as potential nano-carriers for drug delivery, no prior efforts have been made to study their interactions with biomolecules from a biophysical and mechanistic perspective. SLNs are colloidal dispersions of the solid lipid in an aqueous solution stabilized by surfactants. Herein, a hot emulsification methodology was employed to formulate SLNs, and their interactions with BSA were analyzed. The SLNs were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques to obtain information on their size, zeta potential, and shape. Fluorescence data suggested the presence of weak interactions between the SLNs and BSA. Static quenching is confirmed using time-correlated single-photon counting (TCSPC) experiments. Differential scanning calorimetric (DSC) and fluorescence spectroscopic experiments suggest the thermal stabilization of BSA by the SLNs. This stabilization results from the enhancement of the secondary structure of the protein without significantly altering the tertiary structure. Isothermal calorimetry (ITC) results suggest weak interactions between the SLNs and BSA, although not in a site-specific manner. Overall, mechanistic insights into lipid nanoparticle-protein interactions obtained from such studies efficiently overcome the hurdles associated with targeted drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04737k | DOI Listing |
J Biomed Opt
March 2025
Universität zu Lübeck, Institute of Biomedical Optics, Lübeck, Germany.
: Selective cryolipolysis is a widely used aesthetic procedure that cools subcutaneous adipose tissue to temperatures as low as to induce fat cell destruction. However, real-time monitoring techniques are lacking, limiting the ability to optimize safety and efficacy. Traditional imaging methods either fail to provide adequate penetration depth or lack the resolution necessary for visualizing subcutaneous fatty tissue dynamics.
View Article and Find Full Text PDFRSC Adv
March 2025
Institute of Pharmaceutical Research, GLA University Mathura India.
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates.
View Article and Find Full Text PDFMetab Brain Dis
March 2025
Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran.
Neurodegenerative diseases (NDDs) are characterized by the chronic and progressive deterioration of the structure and function of the nervous system, imposing a significant burden on patients, their families, and society. These diseases have a gradual onset and continually worsen, making early diagnosis challenging. Current drugs on the market struggle to effectively cross the blood-brain barrier (BBB), leading to poor outcomes and limited therapeutic success.
View Article and Find Full Text PDFIran J Pharm Res
December 2024
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Atherosclerosis remains the leading cause of mortality worldwide, highlighting the urgent need for innovative treatments targeting chronic inflammation. Recent research indicates that quercetin (QCT) and curcumin, two naturally occurring compounds, have potential therapeutic benefits in cardiovascular diseases.
Objectives: This study focuses on the novel synthesis of nano-quercetin (N-QCT) encapsulated in solid lipid nanoparticles (SLNs) and investigates the synergistic cardioprotective effects of N-QCT and curcumin on human vascular smooth muscle cells (VSMCs).
Nat Metab
March 2025
Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
Reprogramming T cell metabolism can improve intratumoural fitness. By performing a CRISPR/Cas9 metabolic survey in CD8 T cells, we identified 83 targets and we applied single-cell RNA sequencing to disclose transcriptome changes associated with each metabolic perturbation in the context of pancreatic cancer. This revealed elongation of very long-chain fatty acids protein 1 (Elovl1) as a metabolic target to sustain effector functions and memory phenotypes in CD8 T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!