A common approach to investigating species' niches is to examine relationships between spatial variation in environmental conditions and contemporary species occurrences, using species distribution models (SDM or niche models). The relationships between past species distributions and environmental variation over time are less commonly explored. One way to examine effects on species changes over time is to use paleo-datasets to parameterize niche models, where the use of temporal variation allows for making more direct links between past species and environmental conditions through records of past changes. We examined the impact of five environmental variables (temperature, incidence of external nutrient input, local [within bog] moisture, incidence of regionally dry periods, and fire activity) on temporal variation in peatland species composition, occurrences, and abundances (Sphagnum, Eriophorum, Carex, and Ericaceous dwarf shrubs) using a high-resolution peat macrofossil paleo-record spanning the last ~10,000 years from the Store Mosse bog (south-central Sweden). Our results showed that species composition was affected by external nutrient input, local moisture conditions and incidence of regionally dry conditions. The presence and abundance of different species groups were mainly affected by external nutrient input and the incidence of regionally dry periods. Moreover, hummock Sphagna benefited from external nutrient input and low moisture, and in one species, warmer temperatures. Intermediate Sphagna from cooler temperatures with no external nutrient input, and hollow Sphagna from cooler temperatures and external nutrient input. Lastly, our results showed that environmental effects differed between the successional stages of the peatland in one case. Overall, the observed species' responses imply that peatland carbon dynamics will shift with future changes in climate. By examining links between climate and species responses of the past, this study demonstrates that the paleo-data approach in SDMs can contribute to a better understanding of the environmental effects influencing species distributions on longer time scales, thereby providing a valuable tool to improve predictions of future climate change effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874255 | PMC |
http://dx.doi.org/10.1002/ecy.70033 | DOI Listing |
FEMS Microbiol Lett
March 2025
Plant-Soil Interactions group, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
As the human population grows, so does the demand for higher agricultural yields. As a result, agricultural intensification practices are increasing while soil health is often declining. Integrating the benefits of microorganisms into agricultural management systems can reduce the need for external resource inputs.
View Article and Find Full Text PDFThis review focuses on the anatomic and radiographic characteristics of the pediatric proximal femur and the advantages and disadvantages of different protocols for the management of pediatric femoral neck fractures (PFNFs) in terms of fracture classification, reduction methods, reduction quality and fixation methods, with the goal of proposing an optimal treatment protocol for PFNFs to reduce the incidence of postoperative complications. The anatomic and radiographic characteristics of the pediatric proximal femur, including the presence of an active growth plate, an immature femoral calcar, greater trabecular density and plasticity and a relatively immature blood supply are very different from those of the adult proximal femur. Treatment protocols for PFNFs must differ from those for adult femoral neck fractures.
View Article and Find Full Text PDFWIREs Water
February 2025
California Department of Water Resources, West Sacramento, California, USA.
Harmful Cyanobacterial Blooms (HCBs) threaten ecological and human health, and their incidence and magnitude appear to be rising globally. However, a lack of guidance exists on how to choose the best HCB control and mitigation strategy for different types of water bodies. The portfolio of available in situ control techniques is diverse, ranging from experimental to well established, with complicated and poorly-documented records of effectiveness across different settings and a range of unintended ecological consequences.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Despite extensive research on neuroimaging correlates of human brain aging, there is little mechanistic insight into how they are linked to loss of brain function. Previous studies on the role of cerebral blood flow (CBF) in supporting brain function have focused on delivery of nutrients, namely oxygen and glucose. However, CBF is required also to clear the byproducts of energy metabolism, namely CO and protons.
View Article and Find Full Text PDFJ Environ Manage
March 2025
International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China; Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA. Electronic address:
Water depth variation can lead to the vertical structure change of microbial communities in reservoirs, and then affect the relationship between the microbial communities along the depth gradient, profoundly affecting the stability of the aquatic ecosystems. However, the interspecific dynamics of microbial communities across different water layers in deep-water low-nutrient drinking water reservoirs remain not well understood. Thus, we assessed microbial communities' dynamic changes in different water layers in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!