Adenosine diphosphate (ADP) is a key product of two essential classes of biological reactions, catalysed by ATPases and kinases. This makes ADP a highly appealing target for supramolecular detection. However, doing so selectively is exceedingly difficult due to ADP's lower overall charge and similar structure to ATP and the need for compatibility with biological media. Overcoming this challenge, here we present a water-soluble, ADP-selective, luminescent europium(iii) probe suitable for use and in cellular microscopy. This negatively charged Eu(iii) complex binds ADP reversibly and responds by switching on its luminescence, whilst showing minimal interference from ATP, pyrophosphate and a wide range of biological anions. The probe is equipped with two π-conjugated quinolyl-phenoxyacetate antennae, facilitating excitation at 355 nm in fluorescence microscopy. The ancillary carboxylate groups ensure high water solubility and suppress non-specific binding to albumin protein. Our novel probe demonstrates a level of sensing selectivity for ADP that is unrivaled, producing a linear emission response across the physiologically relevant concentration range (10-400 μM), even in the presence of excess millimolar ATP. We demonstrate that this amphiphilic Eu(iii) probe permeates mammalian cells and localises within the mitochondria and lysosomes. The low background emission of the probe combined with its excellent ADP selectivity and long-lived luminescence makes it a promising tool for visualising ADP levels in living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868914PMC
http://dx.doi.org/10.1039/d4sc07188cDOI Listing

Publication Analysis

Top Keywords

luminescent europiumiii
8
europiumiii probe
8
adenosine diphosphate
8
diphosphate adp
8
adp
7
probe
6
switch-on luminescent
4
probe selective
4
selective time-resolved
4
time-resolved detection
4

Similar Publications

The global surge in diabetes mellitus (DM) and its associated complications has prompted significant efforts to mitigate this growing public health challenge. Among these complications, diabetic nephropathy (DN) is of particular concern due to its high rates of morbidity and mortality. Extensive research has identified methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) as critical contributors to the pathogenesis of DN.

View Article and Find Full Text PDF

Adenosine diphosphate (ADP) is a key product of two essential classes of biological reactions, catalysed by ATPases and kinases. This makes ADP a highly appealing target for supramolecular detection. However, doing so selectively is exceedingly difficult due to ADP's lower overall charge and similar structure to ATP and the need for compatibility with biological media.

View Article and Find Full Text PDF

Regulating the energy level of a lanthanide (III) metal-organic framework (Ln-MOF) via an "antenna effect" is an effective strategy for achieving the ratiometric luminescent dynamics carcinoid biomarker sensing application. Herein, we present a ratiometric luminescent europium-based MOF material {[Eu(BPDC)(μ-OH)(HO)]·2.5HO} (, HBPDC = 2,2'-bipyridine-4,4'-dicarboxylic acid and DMF = -dimethylformamide), incorporating tetranuclear cubane-like [Eu(μ-OH)(COO)] cluster cores, for carcinoid biomarker 5-hydroxyindole-3-acetic acid (5-HIAA) detection through the influence of Eu ions sensitized by HBPDC ligands as well as 5-HIAA.

View Article and Find Full Text PDF

The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.

View Article and Find Full Text PDF

This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)][RE(hfa)tetraglyme] (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!