Dual-band photodetection of ultraviolet (UV) and infrared (IR) light is an advanced technology aimed at simultaneously or selectively detecting signals from these two distinct wavelength bands. This technique offers broad application prospects, particularly in environments requiring multispectral information. In this work, a solar-blind UV photodetector made from an amorphous GaO (a-GaO) thin film was combined with a short-wave infrared photodetector made from a HgTe colloidal quantum dot (CQD) film. The photodetector exhibited a high responsivity of up to 1808 A W, detectivity of 3.88 × 10 Jones, and an external quantum efficiency of 8.8 × 10% at UV wavelength as well as a responsivity of 0.25 A W, detectivity of 1.45 × 10 Jones, and an external quantum efficiency of 15.5% at short-wave infrared wavelength. Furthermore, corona discharge detection using this photodetector was demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868912 | PMC |
http://dx.doi.org/10.1039/d4na00978a | DOI Listing |
ACS Appl Mater Interfaces
March 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
While amorphous indium gallium zinc oxide (α-IGZO) thin film transistors (TFTs) are practical alternatives to silicon-based TFTs, their field-effect mobility (∼50 cm/(V s), depending on deposition conditions) remains insufficient to meet the growing demands of high-resolution active-matrix organic light-emitting diode (AMOLED) displays. The need for high-performance oxide TFTs with mobility ≥100 cm/(V s) has become critical to meet the evolving display industry's requirements. This study explored the development of high-mobility hexagonal homologous compound (HC) indium zinc tin oxide (IZTO) TFTs as an alternative to α-IGZO TFTs.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Finance and Economics Department, Sanya University, Sanya 572022, China.
We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C).
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan.
Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an AlO thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the AlO spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Wide Bandgap Semiconductors and Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO and SiO/HfO gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!