The treatment of Gram-negative bacterial infections is challenged by antibiotic resistance and complicated forms of infection like persistence, multispecies biofilms, intracellular infection, as well as infection-associated hyperinflammation and sepsis. To overcome these challenges, a dual-functional antibiotic adjuvant has been developed as a novel strategy to target complicated forms of bacterial infection and exhibit immunomodulatory properties. The lead adjuvant, D-LBDiphe showed multimodal mechanisms of action like weak outer membrane permeabilization, weak membrane depolarization, and inhibition of efflux machinery, guided primarily by hydrogen bonding and electrostatic interactions, along with weak van der Waals forces. D-LBDiphe potentiated antibiotics up to ∼4100-fold, targeted phenotypic forms of antibiotic tolerance, and revitalized antibiotics against topical and systemic infections of in mice. The aromatic moiety in D-LBDiphe was instrumental for interaction with lipopolysaccharide (LPS) micelles, and this interaction was the driving factor in reducing pro-inflammatory cytokines by 61.8-79% in mice challenged with LPS. Such multifarious properties of a weak-membrane perturbing, nonactive and nontoxic adjuvant have been discussed for the first time, supported by detailed mechanistic understanding and elucidation of structure-guided properties. This work expands the scope of antibiotic adjuvants and validates them as a promising approach for treatment of complicated bacterial infections and inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868958 | PMC |
http://dx.doi.org/10.1021/acscentsci.4c02060 | DOI Listing |
Rev Med Virol
March 2025
Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA.
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Prevention and Treatment, Hunan Institute for Tuberculosis Control (Hunan Chest Hospital), Changsha 410013, China.
Objectives: Reducing mortality during anti-tuberculosis treatment is crucial for completing full-course standardized therapy and achieving tuberculosis cure. The study aims to analyze the mortality and its influencing factors among pulmonary tuberculosis patients undergoing anti-tuberculosis treatment in Hunan Province.
Methods: In this retrospective cohort study, data on pulmonary tuberculosis patients from the Hunan Provincial Tuberculosis Management Information System were collected between January 1, 2019 and December 31, 2023.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: () adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a -type calcium channel blocker, and oxacillin (OXA) against .
Methods: Clinical isolates of were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University.
Life Sci
March 2025
Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
Polymyxin B serves as the last line of defense in treating multidrug-resistant Gram-negative bacterial infections. However, its distinctive side effect of hyperpigmentation significantly impacts patients' psychological well-being and treatment adherence. Currently, the underlying mechanism of polymyxin B-induced pigmentation remains to be incompletely investigated.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
The current research emphasis is on the development of wound dressings that can inhibit bacterial infections and facilitate the treatment of complex wound healing processes. In this study, nanofibrous mats of polyvinyl alcohol/chitosan/ZIF-67(PVA/Cs/ZIF-67) were prepared using an electrospinning technique, to investigate their antibacterial and regenerative properties in a rat model of full-thickness skin wounds. ZIF-67 nanoparticles, with an average size of approximately 373.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!