Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Riding a motorcycle involves risks that can be minimized through advanced sensing and response systems to assist the rider. The use of camera-collected images to monitor road conditions can aid in the development of tools designed to enhance rider safety and prevent accidents. This paper proposes a method for developing deep learning models designed to operate efficiently on embedded systems like the Raspberry Pi, facilitating real-time decisions that consider the road condition. Our research tests and compares several state-of-the-art convolutional neural network architectures, including EfficientNet and Inception, to determine which offers the best balance between inference time and accuracy. Specifically, we measured top-1 accuracy and inference time on a Raspberry Pi, identifying EfficientNetV2 as the most suitable model due to its optimal trade-off between performance and computational demand. The model's top-1 accuracy significantly outperformed other models while maintaining competitive inference speeds, making it ideal for real-time applications in traffic-dense urban settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868262 | PMC |
http://dx.doi.org/10.3389/frai.2025.1520557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!