At ontogenetic transitions, animals often exhibit plastic variation in development, behavior and physiology in response to environmental conditions. Most terrestrial-breeding frogs have aquatic larval periods. Some species can extend their initial terrestrial period, as either a plastic embryonic response to balance trade-offs across environments or an enforced wait for rain that allows larvae to access aquatic habitats. Terrestrial larvae of the foam-nesting frog, , can arrest development, make their own nest foam to prevent dehydration, and synthesize urea to avoid ammonia toxicity. These plastic responses enable survival during unpredictably long periods in underground nest chambers, waiting for floods to enable exit and continued development in water. However, such physiological and behavioral responses may have immediate and long-term carry-over effects across subsequent ecological and developmental transitions. We examined effects of prolonged terrestriality and larval foam-making activity on larval physiology, development, and metamorphosis in . We tested for changes in foam-making ability by measuring the nests larvae produced following complete removal of parental foam at different ages. We measured ammonia and urea levels in larval foam nests to assess nitrogen excretion patterns, testing for effects of larval age, soil hydration around parental nests, and repeated nest construction. We also assessed immediate and long-term effects of larval foam-making and prolonged terrestriality on larval morphology at water entry and development to metamorphosis. We found that larvae arrested development during prolonged time on land and even young larvae were able to effectively produce multiple foam nests. We found high ammonia concentrations in larval nests, very high urea excretion by developmentally arrested older larvae, and faster growth of larvae in water than while constructing nests. Nonetheless, sibling larvae had a similar aquatic larval period and size at metamorphosis, regardless of their nest-making activity and timing of water entry. Sibship size increased the size of larval foam nests, but reduced per-capita foam production and increased size at metamorphosis, suggesting maternal effects in cooperative groups. Metamorph size also decreased with aquatic larval period. Our results highlight the extent of larval ability to maintain and construct a suitable developmental environment and excrete N-waste as urea, which are both crucial for survival during enforced extensions of terrestriality. Our results suggest that the energetic reserves in large eggs are sufficient to meet metabolic costs of urea synthesis and foam production during developmental arrest over an extended period on land, with no apparent carry-over effects on fitness-relevant traits at metamorphosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871897PMC
http://dx.doi.org/10.7717/peerj.18990DOI Listing

Publication Analysis

Top Keywords

effects larval
12
larval foam-making
12
prolonged terrestriality
12
development metamorphosis
12
larval
12
aquatic larval
12
foam nests
12
foam-making prolonged
8
nitrogen excretion
8
larvae
8

Similar Publications

The fall armyworm (FAW), Spodoptera frugiperda, is a serious invasive crop pest and threat to food security. Conventional pest control approaches using chemical pesticides can lead to adverse environmental and human health problems calling for safer alternative pest management options. Volatile organic compounds (VOCs) released by plants constitutively and in response to herbivory have been shown to enhance ecologically benign biocontrol alternatives to chemical insecticides for pest management.

View Article and Find Full Text PDF

Differential effect of ubiquitous and germline depletion of Integrator complex function on C. elegans physiology.

Biol Open

March 2025

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.

The Integrator is a metazoan-conserved protein complex with endonuclease activity that functions to cleave various RNA substrates to shape transcriptome homeostasis by coordinating small nuclear RNA biogenesis to premature transcription termination. Depletion of Integrator results in developmental defects across different model systems and has emerged as a causative factor in human neurodevelopmental syndromes. Here, we use the model system Caenorhabditis elegans to enable studying the temporal effects of Integrator depletion on various physiological parameters with the auxin-inducible degron system that permitted depletion of INTS-4 (Integrator subunit) catalytic subunit of the protein complex.

View Article and Find Full Text PDF

Detailed studies on the embryotoxic and teratogenic effects of synthetic cannabinoids known to be abused are very limited. The present study aimed to evalutate the possible embryotoxic, teratogenic, behavioral, and molecular effects of 4F-MDMB-BUTICA, a new generation synthetic cannabinoid, using zebrafish embryos. The zebrafish embryos were exposed to the cannabinoid at 0.

View Article and Find Full Text PDF

Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae.

Aquat Toxicol

March 2025

Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; National Biodiversity Future Centre, 90133, Palermo, Italy. Electronic address:

Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates. In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses.

View Article and Find Full Text PDF

There is increasing evidence for the co-occurrence of adaptive within-generation (WGP) and transgenerational (TGP) plasticity and the ecological scenarios driving both types of plasticity. However, some aspects of their transcriptional mechanisms, such as the role of alternative splicing and the consequences of parental acclimation across life stages, have remained elusive. We explore these fundamental questions by considering the desert endemic Drosophila mojavensis for which prior evidence indicates adaptive thermal acclimation within and across generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!