The ability to prevent bacterial adhesion on surfaces and to facilitate the removal of bacteria once they have already contaminated or colonized a surface is important in a broad range of fundamental and applied contexts. The work reported here sought to characterize the physicochemical properties of a family of biocide-free hydrophobic polyurethane coatings containing polysiloxane segments and evaluate their ability to mitigate bacterial fouling and/or facilitate subsequent surface cleaning after exposure to pathogenic bacteria. We developed benchtop microbiological assays to characterize surface fouling and subsequent removal of bacteria after repeated (i) short-term intermittent physical contact with and (ii) longer-term continuous flow-based contact with liquid growth media containing either or , two common Gram-positive or Gram-negative bacterial pathogens, respectively. Characterization of fouled and cleaned surfaces using fluorescence microscopy and standard agar-based plaque assays revealed significant differences in both reductions in initial fouling and subsequent cleanability after gentle rinsing with water. These differences correlated to differences in the surface properties of these materials (e.g., hydrophobicity and contact angle hysteresis), with coatings exhibiting lower contact angle hysteresis generally having the greatest antibiofouling and easy-to-clean properties. Our results suggest that these biocide-free, siloxane-containing polyurethane-based clearcoat materials show significant promise for the mitigation of surface fouling and bacterial adhesion, which could prove useful in a range of commercial applications, including in "high touch" environments where microbial contamination is endemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866211PMC
http://dx.doi.org/10.1021/acsomega.4c11020DOI Listing

Publication Analysis

Top Keywords

pathogenic bacteria
8
bacterial adhesion
8
removal bacteria
8
surface fouling
8
fouling subsequent
8
contact angle
8
angle hysteresis
8
surface
5
sprayable biocide-free
4
biocide-free polyurethane
4

Similar Publications

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

Banana (Musa spp.) is widely cultivated as the major fruit in Pakistan. Anthracnose fruit rot caused by various Colletotrichum spp.

View Article and Find Full Text PDF

Characterization of Vibrio cholerae from the Jukskei River in Johannesburg South Africa.

Lett Appl Microbiol

March 2025

Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa.

The current study aimed to isolate and characterize Vibrio cholerae (V. cholerae) isolated from the Jukskei River, one of the largest Rivers in Johannesburg, South Africa. Water samples collected from the Jukskei River were subjected to culture-based methods for the detection and isolation of V.

View Article and Find Full Text PDF

In-situ quantitative detection of hypochlorous acid in food samples by employing a near-infrared fluorescent probe in association with a portable optical data acquisition system.

Anal Chim Acta

May 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China. Electronic address:

Background: Hypochlorous acid (HClO) is a crucial disinfectant in the food industry. It can be used to soak perishable foods like vegetables, fruits, eggs, fish, and raw meat before processing and storage, eliminating microorganisms, bacteria, fungi, and pathogens to ensure food safety. HClO also helps preserve vegetables and fruits by reducing ethylene production, delaying rotting, decreasing cell membrane permeability, inhibiting polyphenol oxidase activity, and postponing discoloration.

View Article and Find Full Text PDF

Background: Immunomagnetic separation is essential for screening pathogenic bacteria to prevent food poisoning. However, free immunomagnetic nanobeads (IMNBs) coexist with IMNB-bacteria conjugates (IBCs) after traditional immunomagnetic separation resulting in the infeasibility for IMNBs on IBCs to further act as signal label in bacterial detection. Although we have demonstrated that magnetophoretic separation at a high flowrate could separate IBCs from IMNBs, partial IMNBs were still found with IBCs due to chaotic flows and resulted in inevitable interferences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!