Advances in machine learning have transformed structural biology, enabling swift and accurate prediction of protein structure from sequence. However, challenges persist in capturing sidechain packing, condition-dependent conformational dynamics, and biomolecular interactions, primarily due to scarcity of high-quality training data. Emerging techniques, including cryo-electron tomography (cryo-ET) and high-throughput crystallography, promise vast new sources of structural data, but translating raw experimental observations into mechanistically interpretable atomic models remains a key bottleneck. Here, we aim to address these challenges by improving the efficiency of structural analysis through combining experimental measurements with a landmark protein structure prediction method - AlphaFold2. We present an augmentation of AlphaFold2, ROCKET, that refines its predictions using cryo-EM, cryo-ET, and X-ray crystallography data, and demonstrate that this approach captures biologically important structural variation that AlphaFold2 does not. By performing structure optimization in the space of coevolutionary embeddings, rather than Cartesian coordinates, ROCKET automates difficult modeling tasks, such as flips of functional loops and domain rearrangements, that are beyond the scope of current state-of-the-art methods and, in some instances, even manual human modeling. The ability to efficiently sample these barrier-crossing rearrangements unlocks a new horizon for scalable and automated model building. Crucially, ROCKET does not require retraining of AlphaFold2 and is readily adaptable to multimers, ligand-cofolding, and other data modalities. Conversely, our differentiable crystallographic and cryo-EM target functions are capable of augmenting other structure prediction methods. ROCKET thus provides an extensible framework for the integration of experimental observables with biomolecular machine learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870471 | PMC |
http://dx.doi.org/10.1101/2025.02.18.638828 | DOI Listing |
J Sci Food Agric
March 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
Background: White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model.
View Article and Find Full Text PDFFront Immunol
March 2025
Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Background: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with better prognostic outcomes.
View Article and Find Full Text PDFRSC Adv
March 2025
School of Humanities and Management, Heilongjiang University of Chinese Medicine Harbin PR China.
Wearable sensors have emerged as a transformative technology, enabling real-time monitoring and advanced functionality in various fields, including healthcare, human-machine interaction, and environmental sensing. This review provides a comprehensive overview of the latest advancements in wearable sensor technologies, focusing on innovations in sensor design, material flexibility, and integration with machine learning. We explore the feasibility of wearable electronics in achieving high-performance, flexible devices and discuss their potential to enhance human-machine interactions through intelligent data processing and decision-making.
View Article and Find Full Text PDFFront Mol Biosci
February 2025
Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Background: Numerous studies have reported that dysregulation of fatty acid metabolic pathways is associated with the pathogenesis of vitiligo, in which arachidonic acid metabolism (AAM) plays an important role. However, the molecular mechanisms of AAM in the pathogenesis of vitiligo have not been clarified. Therefore, we aimed to identify the biomarkers and molecular mechanisms associated with AAM in vitiligo using bioinformatics methods.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
March 2025
Purdue University, School of Electrical and Computer Engineering, Video and Image Processing Laboratory, West Lafayette, Indiana, United States.
Purpose: The advancement of high-content optical microscopy has enabled the acquisition of very large three-dimensional (3D) image datasets. The analysis of these image volumes requires more computational resources than a biologist may have access to in typical desktop or laptop computers. This is especially true if machine learning tools are being used for image analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!