Psychedelics are well known for their ability to produce profoundly altered states of consciousness. But, more importantly, the effects of psychedelics can influence neurobehavioral changes that last well after these acute subjective effects end. This phenomenon is currently being leveraged in the development of psychedelic-assisted psychotherapies for the treatment of multiple neuropsychiatric disorders. The cellular and molecular mechanisms by which single doses of psychedelics are able to mediate long-term cognitive changes are an active area of research. We hypothesize that psychedelics contribute to long term changes in cellular state by covalently modifying proteins. This post-translational modification by psychedelics is possible through the transglutaminase-mediated transamidation of their amine termini to glutamine carboxamide residues. Here, we synthesize and utilize a propargylated analogue of mescaline - the classic serotonergic psychedelic phenethylamine found in cacti species - to identify putative protein targets of psychedelic modifications through the use of click-chemistry in a primary human astrocyte cell culture model. Our preliminary findings indicate that a diverse array of glial proteins may be substrates for transglutaminase 2-mediated monoaminylation by our model phenethylamine ("phenethylaminylation"). Based on these points, we speculatively highlight new directions for the study of this putative noncanonical psychedelic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870397PMC
http://dx.doi.org/10.1101/2025.02.13.638188DOI Listing

Publication Analysis

Top Keywords

glial proteins
8
psychedelics
5
phenethylaminylation preliminary
4
preliminary evidence
4
evidence covalent
4
covalent transamidation
4
psychedelic
4
transamidation psychedelic
4
psychedelic phenethylamines
4
phenethylamines glial
4

Similar Publications

In situ global mapping of protein perturbations via protein abundance and conformation analysis.

Anal Chim Acta

May 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:

Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.

View Article and Find Full Text PDF

Itaconate restrains acute proinflammatory activation of microglia MG after traumatic brain injury in mice.

Sci Transl Med

March 2025

Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.

Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.

View Article and Find Full Text PDF

Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes.

Cell Mol Neurobiol

March 2025

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.

Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators.

View Article and Find Full Text PDF

Exercise-induced Activation of SIRT1/BDNF/mTORC1 Signaling Pathway: A Novel Mechanism to Reduce Neuroinflammation and Improve Post-stroke Depression.

Actas Esp Psiquiatr

March 2025

Graduate School, Harbin Sport University, 150008 Harbin, Heilongjiang, China; Department of Rehabilitation Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China.

Background: Neuroinflammation and neurogenic disorders lead to depression in stroke patients. As, exercise intervention, a non-drug therapy, has been proven effective in post-stroke depression (PSD) patients. However, the underlying molecular mechanism by which exercise improves PSD still needs to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!