Advancements in transmission electron microscopy (TEM) have enabled in-depth studies of biological specimens, offering new avenues to large-scale imaging experiments with subcellular resolution. Mitochondrial structure is of growing interest in cancer biology due to its crucial role in regulating the multi-faceted functions of mitochondria. We and others have established the crucial role of mitochondria in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with limited therapeutic options. Building upon our previous work demonstrating the regulatory role of mitochondrial structure dynamics in metabolic adaptation and survival of chemotherapy-refractory TNBC cells, we sought to extend those findings to a large-scale analysis of transmission electron micrographs. Here we present a UNet artificial intelligence (AI) model for automatic annotation and assessment of mitochondrial morphology and feature quantification. Our model is trained on 11,039 manually annotated mitochondria across 125 micrographs derived from a variety of orthotopic patient-derived xenograft (PDX) mouse model tumors and adherent cell cultures. The model achieves an F1 score of 0.85 on test micrographs at the pixel level. To validate the ability of our model to detect expected mitochondrial structural features, we utilized micrographs from mouse primary skeletal muscle cells genetically modified to lack Dynamin-related protein 1 (Drp1). The algorithm successfully detected a significant increase in mitochondrial elongation, in alignment with the well-established role of Drp1 as a driver of mitochondrial fission. Further, we subjected and TNBC models to conventional chemotherapy treatments commonly used for clinical management of TNBC, including doxorubicin, carboplatin, paclitaxel, and docetaxel (DTX). We found substantial within-sample heterogeneity of mitochondrial structure in both and TNBC models and observed a consistent reduction in mitochondrial elongation in DTX-treated specimens. We went on to compare mammary tumors and matched lung metastases in a highly metastatic PDX model of TNBC, uncovering significant reduction in mitochondrial length in metastatic lesions. Our large, curated dataset provides high statistical power to detect frequent chemotherapy-induced shifts in mitochondrial shapes and sizes in residual cells left behind after treatment. The successful application of our AI model to capture mitochondrial structure marks a step forward in high-throughput analysis of mitochondrial structures, enhancing our understanding of how morphological changes may relate to chemotherapy efficacy and mechanism of action. Finally, our large, manually curated electron micrograph dataset - now publicly available - serves as a unique gold-standard resource for developing, benchmarking, and applying computational models, while further advancing investigations into mitochondrial morphology and its impact on cancer biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870520 | PMC |
http://dx.doi.org/10.1101/2025.02.19.635300 | DOI Listing |
Cells
March 2025
Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.
View Article and Find Full Text PDFCells
March 2025
Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy.
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using H NMR metabolomics to identify metabolite markers linked to mitochondrial apoptotic pathways. BKA had minimal metabolic effects in RCC cells, suggesting its role in preserving mitochondrial function without significantly altering metabolic pathways. In contrast, STAU induced substantial metabolic reprogramming in RCC cells, disrupting energy production, redox balance, and biosynthesis, thereby triggering apoptotic pathways.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA.
Interleukin 24 (IL-24) is a tumor-suppressing protein currently in clinical trials. We previously demonstrated that IL-24 leads to apoptosis in cancer cells through protein kinase A (PKA) activation in human breast cancer cells. To better understand the mechanism by which IL-24 induces apoptosis, we analyzed the role of glycogen synthase kinase-3 beta (GSK3β), a highly conserved serine/threonine kinase in cancer cells and a downstream target of PKA.
View Article and Find Full Text PDFCells
February 2025
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
Although every cell biologist knows the importance of selecting the right growth conditions and it is well known that the composition of growth medium may vary depending on a product brand or lot affecting many cellular processes, still those effects are poorly systematized. We addressed this issue by comparing the effect of 12 fetal bovine sera (FBS) and eight growth media from different brands on the morphological and functional parameters of five cell types: lung adenocarcinoma, neuroblastoma, glioblastoma, embryonic kidney, and colorectal cancer cells. Using high-throughput imaging, we compared cell proliferation; performed morphological profiling based on the imaging of 561,519 cells; measured extracellular regulated kinases (ERK1/2) activity, mitochondria potential, and lysosome accumulation; and compared cell sensitivity to drugs, response to EGF stimulation, and ability to differentiate.
View Article and Find Full Text PDFCells
February 2025
Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Jeonbuk-do, Republic of Korea.
Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!