A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Presenting Antimicrobial Peptides on Poly(ethylene glycol): Star-Shaped vs Comb-Like Architectures. | LitMetric

Conjugating antimicrobial peptides (AMPs) to nonlinear polymers is a promising strategy to overcome the translational challenges of AMPs toward treating infections caused by antibiotic-resistant bacteria. Nonlinear polymers, and therefore conjugates, can be prepared with various architectures (e.g., star-shaped, comb-like, hyperbranched, etc.), however, the effects of polymer architecture on antimicrobial performance and related properties, like size and morphology in solution and secondary structure, are not yet well-understood. Here, we compare conjugates of the human chemokine-derived AMP stapled P9 with poly(ethylene glycol) (PEG) prepared in two of the major nonlinear architectures: star-shaped and comb-like. At comparable molecular weights and compositions (peptide wt %), comb-like conjugates afford increased helicity, solubility, antimicrobial activity, and proteolytic stability compared to star-shaped analogs. We then leveraged the expansive design space of comb-like architectures to prepare conjugates with different backbone lengths and PEG side chain lengths, with shorter PEG side chains leading to increased helicity, yet potentially less shielding from proteolytic degradation and the longest backbone lengths furnishing the most potent antimicrobial activity. Both comb-like and star-shaped conjugates display high zeta potential, indicating that the cationic AMPs were accessible for electrostatic interactions with bacterial membranes. Yet, the comb-like conjugates showed a higher fraction of unimolecular structures indicative of a lower propensity for supramolecular assembly that could be encumbering the desired AMP-bacteria interactions in the star-shaped conjugates. Together, our work shows comb-like AMP-polymer conjugates to outperform analogous star-shaped conjugates, while adding design flexibility to access an expansive range of monomer chemistries, monomer distributions, and backbone lengths to modulate performance-determining properties and ultimately furnish an effective suite of AMP-polymer materials as alternatives to conventional antibiotics for combatting bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867009PMC
http://dx.doi.org/10.1021/acs.macromol.4c02762DOI Listing

Publication Analysis

Top Keywords

star-shaped comb-like
12
backbone lengths
12
star-shaped conjugates
12
conjugates
9
antimicrobial peptides
8
polyethylene glycol
8
comb-like
8
comb-like architectures
8
nonlinear polymers
8
architectures star-shaped
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!