The COVID-19 pandemic, an unprecedented global health crisis, has thrust humanity into a relentless battle with a variety of treatments and vaccines against the SARS-CoV-2 virus. Recent developments in nanotechnology have garnered significant interest in the application of metallic nanoparticles (NPs); specifically, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have demonstrated antimicrobial and antiviral properties. This study investigates the molecular interactions between the receptor binding domains of five SARS-CoV-2 spike protein variants (Alpha, Beta, Delta, Omicron, and Gamma) and the angiotensin-converting enzyme 2 (ACE2) receptor, followed by the docking of AuNPs and AgNPs and the natural compound Beta-escin onto these complexes. As well as the inspection of both NPs against the virus main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Comprehensive computational simulations utilizing Autodock 4.2 and HDOCK server were employed to evaluate the binding affinities of these NPs toward key viral targets, SARS-CoV-2 Mpro, RdRp, and the spike glycoprotein. The results revealed that both AgNPs and AuNPs exhibited successful binding to the active pockets of SARS-CoV-2 Mpro, with slightly varying binding energies. In contrast, for RdRp, AgNPs demonstrated superior binding affinity compared to AuNPs, with differences in the residues involved in the binding pocket. AuNPs exhibited stronger binding affinities in the spike protein pocket. We also determined robust binding affinities between ACE2 and the spike variants, with the Omicron variant exhibiting the highest affinity. Subsequent docking of AuNPs and AgNPs revealed strong interactions with all ACE2-spike complexes, with AuNPs showing slightly higher affinities. The findings contribute to a deeper understanding of the interactions between NPs and viral proteins, shedding light on their mechanisms of action and their potential to offer innovative solutions for combating infectious diseases, particularly those caused by SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868714 | PMC |
http://dx.doi.org/10.1515/biol-2022-1047 | DOI Listing |
FASEB J
March 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.
Butyrophilin 3A1 (BTN3A1) is an integral membrane protein capable of detecting phosphoantigens, like (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), through its internal B30.2 domain. Detection of phosphoantigens leads to interactions with butyrophilin 2A1 and the subsequent activation of γδ-T cells.
View Article and Find Full Text PDFGlycobiology
March 2025
Department of Science and Technology, Seikei University, Tokyo 180-8633, Japan.
Calreticulin (CRT), a chaperone that possesses both lectin and chaperone domains, is localized in the endoplasmic reticulum (ER). CRT has diverse functions and localizations; thus, CRT is a multifunctional protein. Particularly in the ER, CRT mainly aids in the proper folding of nascent glycoproteins as lectin chaperones.
View Article and Find Full Text PDFNanotheranostics
March 2025
Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow- 226025, Uttar Pradesh, India.
Breast cancer remains a significant global health challenge, with drug resistance and poor bioavailability of chemotherapeutic agents like paclitaxel (PTX) presenting obstacles to effective treatment. This study investigates the potential role of the Solute Carrier Organic Anion Transporter Polypeptide 1A2 (OATP1A2) in PTX transport using computational approaches. We employed computational modeling, molecular docking, and molecular dynamics (MD) simulations to elucidate the structural dynamics of OATP1A2 and its interaction with PTX.
View Article and Find Full Text PDFFront Pharmacol
February 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
Emodin has shown certain anti-rheumatoid arthritis (RA) activity in preliminary studies. However, the precise mechanisms of emodin's anti-RA effects, particularly its direct targets, remain unclear. This study aimed to evaluate the anti-RA activity of emodin and elucidate its potential mechanisms, with a specific focus on identifying its molecular targets.
View Article and Find Full Text PDFJ Exp Pharmacol
March 2025
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand.
Background: Overproduction of nitric oxide (NO), catalyzed by inducible nitric oxide synthase (iNOS), in the gastric mucosa, contributes to the inflammatory process caused by oxidative stress. Current medications for gastric ulcers, such as proton pump inhibitors and histamine-2 receptor antagonists, have been reported to generate adverse reactions.
Purpose: To obtain the phytochemical profile of inflorescence extract, computational studies, and in vitro assay of the extract towards iNOS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!