Constructing mixed-dimensional heterojunctions through ion exchange between functional organic ammonium halides and the already-deposited bulk 3D perovskite films is a widely adopted strategy to effectively passivate and stabilize perovskite solar cells (PSCs). Such process poses challenges in precisely controlling the composition and distribution of the heterojunctions across the film, in particular for large-area applications. Here, a soft 2D perovskite based on tetrapheptyl-ammonium iodide (TPAI), noted as TPAPbI is reported. It is the first-reported nonpolar readily soluble 2D perovskite, leading to highly compact and oriented perovskite layers. In addition, this nonpolar soluble TPAPbI is beneficial to universally construct thickness-controllable mixed-dimensional perovskite heterojunctions to suppress the non-radiative recombination and promote charge-carrier transfer on all the FA-, MA- and CsPbI PSCs. Such a unique strategy is also suitable for upscaling fabrication, demonstrated by 30 cm × 30 cm FAPbI perovskite submodules with a certified efficiency of 22.06%.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202419750DOI Listing

Publication Analysis

Top Keywords

perovskite
8
mixed-dimensional heterojunctions
8
nonpolar soluble
8
soft nonpolar-soluble
4
nonpolar-soluble two-dimensional
4
two-dimensional perovskite
4
perovskite general
4
general construction
4
construction mixed-dimensional
4
heterojunctions
4

Similar Publications

Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.

View Article and Find Full Text PDF

Self-powered PEC platform with large and stable photocurrent for blocker-free sensitive assay of Caspase-3 activity based on CdInS/CdS QDs anode and NH-MIL-125(Ti)@MAPbI/Au NPs cathode.

Biosens Bioelectron

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

The diagnosis of apoptosis is of particular importance for assessing apoptosis-related disease progression and improving the therapy efficiency. Caspase-3 is the most frequently activated cysteine protease and a key mediator of cell apoptosis, therefore, its activity assay is vital. Here, by encapsulating of MAPbI in NH-MIL-125(Ti) and constructing "Z-scheme" structure between CdInS microspheres and CdS quantum dots (QDs) to obtain high-photoelectrochemical (PEC)-stability and large-photocurrent NH-MIL-125(Ti)@MAPbI/Au NPs photocathode and CdInS/CdS QDs photoanode, respectively, a new dual-photoelectrode self-powered PEC platform was constructed for highly sensitive and blocker-free assay of caspase-3 activity.

View Article and Find Full Text PDF

Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties.

View Article and Find Full Text PDF

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

We report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!