Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis. Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) Apoe mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased atherosclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24-7) family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC-IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF Apoe mice markedly reduced atherosclerotic formation relative to SPF Apoe mice in the aorta under HFHC/IHC conditions. In contrast, microbial colonization did not show a significant impact on the atherosclerotic progression in PA. In summary, this research demonstrated that (1) IHC acts cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential therapeutic approaches to prevent and treat OSA-induced atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881840PMC
http://dx.doi.org/10.1080/19490976.2025.2474142DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
osa-induced atherosclerosis
12
apoe mice
12
obstructive sleep
8
sleep apnea
8
atherosclerosis
8
hfhc-ihc group
8
acid
6
gut
4
microbiota derived
4

Similar Publications

Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.

Br Poult Sci

March 2025

State Key Laboratory for Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.

View Article and Find Full Text PDF

Recent advances in microbial pathogen research have highlighted the potential of gut microbe-based microbial medicine. One of the most extensively studied biological pathways is the gut-brain axis, which has been shown to reverse neurological disorders. Evidence from animal-based studies of dysbiosis suggest complex behavioral changes, such as alterations in sociability and anxiety, can be modulated through gut microbiota.

View Article and Find Full Text PDF

1. Faecal microbiota transplantation (FMT) is a technique that promotes gut microbiota diversity and abundance by transplantation of faeces into a recipient's gastrointestinal tract multiple routes.2.

View Article and Find Full Text PDF

Advances in neuromicrobiology and related omics technologies have reinforced the idea that unseen microbes play critical roles in human cognition and behaviour. Included in this research is evidence indicating that gut microbes, through direct and indirect pathways, can influence aggression, anger, irritability and antisocial behaviour. Moreover, gut microbes can manufacture chemicals that are known to compromise cognition.

View Article and Find Full Text PDF

The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!