Background: Genes that escape X-chromosome inactivation (XCI) in female somatic cells vary in number and levels of escape among mammalian species and tissues, potentially contributing to species- and tissue-specific sex differences. CTCF, a master chromatin conformation regulator, is enriched at escape regions and may play an important role in regulating escape, but the molecular mechanisms remain elusive.

Results: CTCF binding profiles and epigenetic features were systematically examined at escape genes (escapees) using mouse allelic systems with skewed XCI to distinguish the inactive X (Xi) and active X (Xa) chromosomes. We found that six constitutive and two facultative escapees are located inside 30-800 kb domains marked by convergent arrays of CTCF binding sites, consistent with the formation of chromatin loops. Facultative escapees show clear differences in CTCF binding depending on their XCI status in specific cell types/tissues. In addition, sets of strong and in some cases divergent CTCF binding sites located at the boundary between an escapee and its adjacent neighbors subject to XCI would also help insulate domains. Indeed, deletion but not inversion of a CTCF binding site at the boundary between the facultative escapee Car5b and its silent neighbor Siah1b results in a dramatic reduction of Car5b escape. This is associated with reduced CTCF and cohesin binding, which indicates loss of looping and insulation and is supported by 3C combined with Hi-C analysis. In addition, enrichment in the repressive mark H3K27me3 invades the Car5b domain in deleted cells, consistent with loss of expression from the Xi. In contrast, cells with an inversion of the CTCF binding site retain CTCF and cohesin binding, as well as looping, in line with persistence of escape. Interestingly, the levels of escape increase in cells with deletion of either Dxz4, which disrupts the Xi-specific compact 3D structure, or Firre, which results in lower H3K27me3 enrichment on the Xi, indicating that the structural and epigenetic features of the Xi constrain escape from XCI in wild type conditions.

Conclusions: Taken together, our findings support the idea that escape from XCI in female somatic cells is modulated by both the topological insulation of domains via CTCF binding and the surrounding heterochromatin environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874400PMC
http://dx.doi.org/10.1186/s12915-025-02137-7DOI Listing

Publication Analysis

Top Keywords

ctcf binding
28
escape
11
ctcf
10
binding
9
car5b escape
8
xci female
8
female somatic
8
somatic cells
8
levels escape
8
differences ctcf
8

Similar Publications

Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms.

Proc Natl Acad Sci U S A

March 2025

Department of Biology, Computational Biology and Applied Mathematics, Ecole Normale Supérieure, Institute of Biology at Ecole normale Superieure, Université Paris Sciences et Lettres, Paris 75005, France.

Topologically associating domains (TADs) are sub-Megabase regions in vertebrate genomes with enriched intradomain interactions that restrict enhancer-promoter contacts across their boundaries. However, the mechanisms that separate TADs remain incompletely understood. Most boundaries between TADs contain CTCF binding sites (CBSs), which individually contribute to the blocking of Cohesin-mediated loop extrusion.

View Article and Find Full Text PDF

Loop-extrusion machinery, comprising the cohesin complex and CCCTC-binding factor CTCF, organizes the interphase chromosomes into topologically associating domains (TADs) and loops, but acute depletion of components of this machinery results in variable transcriptional changes in different cell types, highlighting the complex relationship between chromatin organization and gene regulation. Here, we systematically investigated the role of 3D genome architecture in gene regulation in mouse embryonic stem cells under various perturbation conditions. We found that acute depletion of cohesin or CTCF disrupts the formation of TADs, but affects gene regulation in a gene-specific and context-dependent manner.

View Article and Find Full Text PDF

Identifying deleterious noncoding variation through gain and loss of CTCF binding activity.

Am J Hum Genet

February 2025

Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Digital Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:

CCCTC binding factor (CTCF) regulates gene expression through DNA binding at thousands of genomic loci. Genetic variation in these CTCF binding sites (CBSs) is an important driver of phenotypic variation, yet extracting those that are likely to have functional consequences in whole-genome sequencing remains challenging. To address this, we develop a hypothesis-driven framework to identify and prioritize CBS variants in gnomAD.

View Article and Find Full Text PDF

Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation.

Nat Commun

March 2025

State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China.

Orderly development of neuroendocrine and nervous system of mammals requires INSM1, a key regulator for cell differentiation. Ectopic expression of INSM1 is closely correlated with human neuroendocrine tumorigenesis, which makes INSM1 a reliable diagnostic biomarker and potential therapeutic target. To date, INSM1 is known as a transcription repressor binding to GGGG-contained DNA element and TEAD1 using its five zinc fingers (ZFs), while the binding mechanism remains unknown.

View Article and Find Full Text PDF

ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network.

Nat Struct Mol Biol

March 2025

Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.

Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!