Background: Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection.

Methods: Nigella sativa-purified oil (NS) and monophosphoryl lipid A (MPLA) were formulated as nanoliposomal compounds (NS-MPLA). Their protective and immunomodulatory efficacies were experimentally tested orally in broiler chicks against challenge with virulent pandemic drug-resistant SP. Four chick groups were utilized: control; NS-MPLA-supplemented; SP-challenged; and SP-challenged, then NS-MPLA-treated. Clinical signs, organ gross pathology, colony-forming counts, and tissue histopathological alterations were investigated. The relative fold-changes in the expression of IL-1β, IL-4, IL-17, IL-22, TLR-4, INF-γ, IgA, and MUC2 genes were evaluated.

Results: The SP-challenged chicks showed notable symptoms and extensive pathological lesions in their internal organs. The bacteria colonized the challenged chicks' livers and continued to shed in their feces for 5-6 days. A minor amount of immune cell tissue trafficking was noted. The NS-MPLA-treated chicks displayed opposing patterns after being challenged with SP. They exhibited mild clinical signs with modest gross pathology in the internal organs. After 3-4 days, the liver and the fecal droppings were cleared of SP. Significant heterophilic aggregation, lymphocytic infiltration, and lymphoid follicle enlargement were observed. Additionally, chicks challenged with SP and then NS-MPLA-treated showed a 5- to tenfold increase in immune-related cytokines, immunoglobulin A, and mucosal relative gene expression folds compared to the SP-challenged non-NS-MPLA-treated, which showed a sharp decline in IL-4 and IL-22 and a minor rise in the rest of the tested gene relative expressions. Chicks given NS-MPLA supplementation showed a significant upregulation of these genes compared to the control group.

Conclusion: In this first report on poultry, it is possible to draw the conclusion that NS-MPLA supplementation in SP-infected chicks boosts immunity and provides protection. It promoted bacterial clearance and tissue repair and stimulated the expression of genes linked to immunity and the mucosal surface. These findings suggest the potential application of NS-MPLA in salmonella control programs as an antibiotic substitute or in immunization strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874670PMC
http://dx.doi.org/10.1186/s12917-025-04473-wDOI Listing

Publication Analysis

Top Keywords

monophosphoryl lipid
8
virulent pandemic
8
broiler chicks
8
causative agent
8
antibiotic substitute
8
clinical signs
8
gross pathology
8
internal organs
8
ns-mpla supplementation
8
chicks
7

Similar Publications

Background: Neisseria gonorrhoeae is an escalating global health threat due to increasing antimicrobial resistance. The emergence of multidrug-resistant (MDR) strains necessitates alternative prevention strategies. This study focused on the development of a bivalent vaccine formulation to address this challenge.

View Article and Find Full Text PDF

The induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play a role as drivers of such responses. Despite advances in vaccine strategies, a safe and effective HIV vaccine remains a significant challenge. The use of an appropriate adjuvant is crucial to the success of HIV vaccines.

View Article and Find Full Text PDF

Background: Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection.

View Article and Find Full Text PDF

In situ vaccine "seeds" for enhancing cancer immunotherapy by exploiting apoptosis-associated morphological changes.

J Control Release

March 2025

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China. Electronic address:

Despite the development of many effective immunoadjuvants (IAs), the therapeutic efficacy of in situ vaccines for anti-tumor applications remains limited. Inspired by the morphological changes occurring during apoptosis, this study aims to leverage the release process of autologous tumor antigens (ATAs) to enhance the anti-tumor activity of in situ vaccines. We developed five distinct liposomes, each with unique characteristics and functions, incorporating FDA-approved monophosphoryl lipid A (MPLA) adjuvants into their lipid bilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!