The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-025-04277-4DOI Listing

Publication Analysis

Top Keywords

marburg virus
12
structural proteins
8
vaccine development
8
marv vaccine
8
vaccines
7
vaccine
7
protein immunology
4
immunology comprehensive
4
comprehensive insights
4
insights marburg
4

Similar Publications

Cases of high-consequence infectious diseases identified in the UK, 1962-2023.

J Med Microbiol

March 2025

NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, UK.

The management of patients with acute infectious diseases can present significant challenges, especially if the causative agent has a propensity for person-to-person transmission. In such cases, effective patient management is dependent on both rapid identification of disease and the provision of necessary medical care while adhering to suitable infection prevention and control measures to reduce the potential for onwards transmission. The UK has operated a defined system for managing patients with high-consequence infectious diseases (HCIDs) since the 1970s, when protocols were first implemented following the first descriptions of several viral haemorrhagic fever diseases, including Marburg virus disease, Lassa fever and Ebola virus disease (EVD).

View Article and Find Full Text PDF

Background And Purpose: Myeloid-derived suppressor cells (MDSCs) play important roles in the pathogenesis of asthma. Recent studies demonstrate that their function can be modulated by different pharmacological approaches. In this study, we focussed on the effects of systemically administered prostaglandin EP receptor agonist L-902,688 and pegylated human Arginase-1 on MDSCs in a murine model of chronic asthma and asthma exacerbation.

View Article and Find Full Text PDF

Unlabelled: The Marburg virus (MARV), a member of the family Filoviridae, is a highly pathogenic virus causing severe hemorrhagic fever with extremely high mortality in humans and non-human primates. The MARV exhibits clinical and epidemiological features almost identical to those of the Ebola virus, no licensed vaccines or antiviral treatments have been developed yet for MARV. However, only a few treatments that remain uncertain of the disease are available to help bring a case for a new therapeutic approach.

View Article and Find Full Text PDF

Unlabelled: Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus.

View Article and Find Full Text PDF

Using a phylogenetic framework to characterize natural selection, we investigate the hypothesis that zoonotic viruses require adaptation prior to zoonosis to sustain human-to-human transmission. Examining the zoonotic emergence of Ebola virus, Marburg virus, influenza A virus, SARS-CoV, and SARS-CoV-2, we find no evidence of a change in the intensity of natural selection immediately prior to a host switch, compared with typical selection within reservoir hosts. We conclude that extensive pre-zoonotic adaptation is not necessary for human-to-human transmission of zoonotic viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!