The rapid dissemination of colistin resistance via mcr-carrying plasmids (pMCRs) poses a significant public health challenge. This study examined the genomic diversity and conjugation mechanisms of pMCRs, with a particular focus on the role of type IV secretion systems (T4SS) in IncI2 plasmids. The 868 complete plasmid sequences revealed various replicon types of pMCRs, with IncI2 as the primary epidemic type, and the co-transfer risk of multidrug resistance genes associated with IncHI2. T4SS was identified in 89.9% of pMCRs, with the T4SS sequence exclusively carried by IncI2 being conserved and typical of the VirB/D4 type, consisting of 12 subunits. Conjugation assays confirmed the essential role of the pilus subunit VirB2 and the significant impact of VirB5 on conjugation. This was further validated in the in vivo intra-species competitive conjugation of Escherichia coli. Structural predictions show that a hypervariable region at the C-terminus of the pentameric VirB5 co-evolves in sequence with VirB6, and the conserved N-terminal may act as a potential drug target to inhibit the plasmid transfer channel. This study will deepen the understanding of the pMCR epidemic patterns and provide additional insights for controlling the spread of resistant plasmids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873049 | PMC |
http://dx.doi.org/10.1038/s42003-025-07748-y | DOI Listing |
G3 (Bethesda)
March 2025
Institute of Forest Sciences (ICIFOR-INIA), Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain.
Stone pine (Pinus pinea L.) is an emblematic tree species within the Mediterranean basin, with high ecological and economic relevance due to the production of edible nuts. Breeding programmes to improve pine nut production started decades ago in Southern Europe but have been hindered by the near absence of polymorphisms in the species genome and the lack of suitable genomic tools.
View Article and Find Full Text PDFOncotarget
March 2025
Worldwide Innovative Network (WIN) Association - WIN Consortium, Chevilly-Larue, France.
The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.
View Article and Find Full Text PDFBiochem Genet
March 2025
Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.
Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.
View Article and Find Full Text PDFJ Epidemiol Glob Health
March 2025
Microbiological Type Culture Collection and Gene Bank (MTCC), CSIR Institute of Microbial Technology, Chandigarh, 160036, India.
Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!