Campomelic Dysplasia (CD) is a rare congenital disease caused by haploinsufficiency (HI) in SOX9. Patients with CD typically present with skeletal abnormalities and 75% of them have sex reversal. In this study, we use CRISPR/Cas9 to generate a human induced pluripotent stem cell (hiPSC) model from a heathy male donor, based on a previously reported SOX9 splice site mutation in a CD patients. This hiPSCs-derived chondrocytes from heterozygotes (HT) and homozygotes (HM) SOX9 mutation carriers showed significant defects in chondrogenesis. Bulk RNA profiling revealed that the BMP-SMAD signaling pathway, ribosome-related, and chromosome segregation-related gene sets were altered in the HT chondrocytes. The profile also showed significant noggin upregulation in CD chondrocytes, with ChIP-qPCR confirming that SOX9 binds to the distal regulatory element of noggin. This suggests SOX9 plays a feedback role in the BMP signaling pathway by modulating noggin expression rather than acting solely as a downstream regulator. This provides further insights into its dosage sensitivity in chondrogenesis. Overexpression of SOX9 showed promising results with improved sulfated glycosaminoglycans (GAGs) aggregation and COL2A1 expression following differentiation. We hope this finding could provide a better understanding of the dosage-dependent role of SOX9 in chondrogenesis and contribute to the development of improved therapeutic targets for CD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872873PMC
http://dx.doi.org/10.1007/s00018-025-05622-yDOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
sox9
8
bmp-smad signaling
8
sox9 haploinsufficiency
4
haploinsufficiency reveals
4
reveals sox9-noggin
4
sox9-noggin interaction
4
interaction bmp-smad
4
chondrogenesis
4
pathway chondrogenesis
4

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Role of exosomes in regulating ferroptosis of tumor cells.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Medical Research Experimental Center, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China.

Exosomes are nanoscale extracellular vesicles widely present in various body fluids. They carry a variety of substances, including proteins, lipids, and nucleic acids, and play significant roles in the body by participating in immune regulation, intercellular signal transduction, and the transport of proteins and nucleic acids. Exosomes can regulate tumor development and drug resistance by modulating ferroptosis.

View Article and Find Full Text PDF

ZNF667 alleviates the inflammatory damage in intervertebral disc degeneration via inhibiting NF-κB signaling pathway.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.

View Article and Find Full Text PDF

Objectives: Sleep deprivation (SD) is a risk factor for the development of chronic pain in adolescents, significantly affecting pain management and prognosis; however, the mechanisms by which SD influences postoperative pain outcomes remain unclear. This study aims to investigate the molecular mechanism through which the spinal 5-hydroxytryptamine 1 receptor (5-HT1R) regulates the excitation/inhibition (E/I) balance in the dorsal horn to modulate postoperative chronic pain induced by SD in adolescent mice.

Methods: A pain model combining 4.

View Article and Find Full Text PDF

Understanding how the auxin hormone signaling pathway components come together to orchestrate cellular responses is key to engineering the growth and development of maize. Although a variety of techniques exist to measure auxin activities in plants, many are time- and resource-intensive or do not easily allow for high-throughput quantitative measurement of component libraries. The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the auxin hormone signaling pathway from essentially any plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!