A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinformatic analysis of molecular expression patterns during the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). | LitMetric

Bioinformatic analysis of molecular expression patterns during the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD).

Sci Rep

Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China.

Published: March 2025

The global incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, primarily driven by the escalating obesity epidemic worldwide. MASLD, a spectrum of liver disorders, can progress to more severe conditions, metabolic dysfunction-associated steatohepatitis (MASH), ultimately culminating in hepatocellular carcinoma (HCC). Given the complex nature of MASLD, there is an urgent need to develop robust risk prediction models and design specialized cancer screening initiatives tailored specifically for individuals with MASLD. This study aimed to identify genes exhibiting trending expression patterns that could serve as potential biomarkers or therapeutic targets. Our approach involved analyzing expression patterns across the five stages of MASLD development and progression. Notably, we introduced an innovative two-phase classification-MASLD occurrence and MASLD progression-instead of categorizing differentially expressed genes (DEGs) into multiple types. Leveraging LASSO regression models, we demonstrated their relatively strong capability to predict and distinguish both MASLD occurrence and progression. Furthermore, our analysis identified CYP7A1 and TNFRSF12A as significantly associated with the prognosis of MASLD progressing to HCC. These findings contribute to the understanding of gene expression dynamics in MASLD and may pave the way for the development of effective prognostic tools and targeted therapies in the realm of liver disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873118PMC
http://dx.doi.org/10.1038/s41598-025-90744-3DOI Listing

Publication Analysis

Top Keywords

expression patterns
12
metabolic dysfunction-associated
12
liver disease
12
masld
10
development progression
8
dysfunction-associated steatotic
8
steatotic liver
8
disease masld
8
bioinformatic analysis
4
analysis molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!