"Inverse melting" refers to a rare phenomenon where an increase in temperature can induce a transition from a liquid to a solid. The vortex lattice in Type II superconductors is one system where inverse melting has been theoretically predicted. Here, we report the inverse melting of vortices in an amorphous ReZr thin film with moderate vortex pinning under the application of a magnetic field. By imaging the vortex state using a scanning tunnelling microscope, we show that at low fields and temperatures, the vortices form a "pinned liquid", that is characterised by low mobility of the vortices and vortex density that is spatially inhomogeneous. As the temperature or magnetic field is increased, the vortices get ordered, eventually forming a nearly perfect vortex solid before melting again into a liquid. Complementing direct imaging with transport measurements, we show that these transformations leave distinct signatures in the magnetotransport properties of the superconductor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873147 | PMC |
http://dx.doi.org/10.1038/s41467-025-57431-3 | DOI Listing |
Ultrasonics
March 2025
State Key Laboratory for Manufacture Systems Engineering, Xi'an Jiaotong University, Xi'an, China; International Joint Laboratory for Micro/nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, China. Electronic address:
Laser powder bed fusion (LPBF) is widely employed in metal additive manufacturing to fabricate components with outstanding mechanical properties and precise dimensions by melting powder layer-by-layer. As an in-line monitoring technique for additive manufacturing (AM), laser ultrasonic testing (LUT) is expected to be effective. During the LPBF process, ultrasonic signals are affected by thickness variations of specimens.
View Article and Find Full Text PDFNat Commun
March 2025
Tata Institute of Fundamental Research, Homi Bhabha Rd, Mumbai, 400005, India.
"Inverse melting" refers to a rare phenomenon where an increase in temperature can induce a transition from a liquid to a solid. The vortex lattice in Type II superconductors is one system where inverse melting has been theoretically predicted. Here, we report the inverse melting of vortices in an amorphous ReZr thin film with moderate vortex pinning under the application of a magnetic field.
View Article and Find Full Text PDFClin Neurophysiol
March 2025
Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil. Electronic address:
Introduction: Freezing of gait (FOG) is a disabling symptom that affects over half of Parkinson's disease patients (PD) and hinders the ability to walk. Subthalamic nucleus (STN) deep brain stimulation (DBS) effectiveness in ameliorating the FOG remains controversial, lacking a reliable electrophysiological biomarker from local field potentials (LFP).
Methods: The LFP-STN rhythms bandpower and dynamics were characterized at rest across groups in a cohort of 23 patients (14 with FOG, and 9 without, n-FOG).
J Biomed Opt
January 2025
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis.
Aim: We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm.
Materials (Basel)
November 2024
Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!