Loss of glutamatergic terminals is hypothesised to contribute to excitation-inhibition imbalance in schizophrenia, supported by evidence that the normal positive association between glutamate concentrations and synaptic terminal density is not found in patients with chronic schizophrenia. However, it is unknown whether the relationship between synaptic terminal density and glutamate levels is altered early in the course of illness. To address this, we investigated [C]UCB-J distribution volume ratio (DVR) and glutamatergic markers in healthy volunteers (HV) and in antipsychotic-naïve/free patients with schizophrenia (SCZ) recruited from first-episode psychosis services. Forty volunteers (HV n = 19, SCZ n = 21) underwent [C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (H-MRS) imaging in the anterior cingulate cortex (ACC) and left hippocampus to index [C]UCB-J DVR and creatine-scaled glutamate (Glu/Cr) and glutamate in combination with glutamine (Glx/Cr). In the HV but not SCZ group, [C]UCB-J DVR was significantly positively associated with Glu/Cr (Spearman's rho = 0.55, p = 0.02) and Glx/Cr (Spearman's rho = 0.73, p = 0.0004) in the ACC, and with Glu/Cr in the left hippocampus (Spearman's rho = 0.77, p = 0.0001). DVR was significantly lower in the ACC in the SCZ group compared to the HV group (Kolmogorov-Smirnov Z = 1.44, p = 0.03). Together, these findings indicate that the normal relationship between levels of a synaptic terminal density marker and levels of glutamate is disrupted early in the course of schizophrenia. This is consistent with the hypothesis that there is loss of glutamatergic terminals at illness onset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873237PMC
http://dx.doi.org/10.1038/s41398-025-03269-8DOI Listing

Publication Analysis

Top Keywords

synaptic terminal
16
terminal density
16
early course
12
spearman's rho
12
density marker
8
course schizophrenia
8
loss glutamatergic
8
glutamatergic terminals
8
left hippocampus
8
[c]ucb-j dvr
8

Similar Publications

Unlabelled: transgenic mice develop aging-related learning deficits and accumulate endogenously generated nonfibrillar aggregates of Aβ (NFA-Aβ) and APP α-carboxy terminal fragments. The mutation disrupts amyloid fibril formation, and no plaques develop in these mice. In the current study, the aging-related accumulation of NFA-Aβ in mice was revealed by A11 immunohistochemistry and NFA-Aβ-detecting cyclic D,L-α-peptide-FITC microscopy.

View Article and Find Full Text PDF

Robust generation of photoreceptor-dominant retinal organoids from porcine induced pluripotent stem cells.

Stem Cell Reports

February 2025

McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Outer retinal degenerative diseases (RDDs) and injuries leading to photoreceptor (PR) loss are prevailing causes of blindness worldwide. While significant progress has been made in the manufacture of human pluripotent stem cell (hPSC)-derived PRs, robust production of pluripotent stem cell (PSC)-PRs from swine, a popular preclinical large animal model, would provide an avenue to collect conspecific functional and safety data to complement human xenograft studies. Toward this goal, we describe the highly efficient generation of PR-dominant porcine induced PSC (piPSC)-derived retinal organoids (ROs) using modifications of our established hPSC-RO differentiation protocol.

View Article and Find Full Text PDF

Astrocyte glypican 5 regulates synapse maturation and stabilization.

Cell Rep

March 2025

Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA. Electronic address:

The maturation and stabilization of appropriate synaptic connections is a vital step in neural circuit development; however, the molecular signals underlying these processes are not fully understood. We show that astrocytes, through production of glypican 5 (GPC5), are required for maturation and refinement of synapses in the mouse cortex during the critical period. In the absence of astrocyte GPC5, thalamocortical synapses show structural immaturity, including smaller presynaptic terminals, decreased postsynaptic density area, and presence of more postsynaptic partners at multisynaptic connections.

View Article and Find Full Text PDF

Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing.

View Article and Find Full Text PDF

Mechanisms underlying functional axonal rewiring after adult mammalian central nervous system (CNS) injuries remain unclear partially due to limited models. Here we develop a mouse intracranial pre-olivary pretectal nucleus (OPN) optic tract injury model and demonstrate that Pten/Socs3 knockout and CNTF expression in retinal ganglion cells (RGCs) promotes optic tract regeneration and OPN reinnervation. Revealed by transmission electron microscopy, trans-synaptic labeling, and electrophysiology, functional synapses are formed in OPN mainly by intrinsically photosensitive RGCs, thereby partially restoring the pupillary light reflex (PLR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!