Studies have shown gamma-amino-butyric acid (GABA) and Glx (a combination of glutamate and glutamine) to be altered in major depressive disorder (MDD). Using proton Magnetic Resonance Spectroscopy (H-MRS), this study aimed to determine whether lower pretreatment GABA and Glx levels in the medial frontal cortex, a region implicated in MDD pathophysiology, are associated with better antidepressant treatment response. Participants with MDD (N = 74) were antidepressant naïve or medication-free for at least three weeks before imaging. Two MEGA-PRESS H-MRS acquisitions were collected, interleaved with a water unsuppressed reference scan. GABA and Glx concentrations were quantified from an average difference spectrum, with preprocessing using Gannet and spectral fitting using TARQUIN. Following imaging, participants were randomized to escitalopram or placebo for 8 weeks in a double-blind design. Multivariable logistic regression models were applied with treatment type and age as covariates. Bayes Factor hypothesis testing was used to interpret the strength of the evidence. No significant association was found between pretreatment Glx, GABA, or Glx/GABA and depression remission status or the continuous outcome, percent change in symptom severity. In an exploratory analysis, no significant correlation was found between pretreatment Glx, GABA or Glx/GABA and days to response. Bayes factor analysis showed strong evidence towards the null hypotheses in all cases. To date, there are no replicated biomarkers in psychiatry. To address this, well-powered, placebo-controlled trials need to be undertaken and reported. The present analysis suggests pretreatment GABA, Glx, or their ratio cannot predict antidepressant treatment response. Future direction including examining glutamate and glutamine separately or examining biological subtypes of MDD separately.Trial Name: Advancing Personalized Antidepressant Treatment Using PET/MRI.Registration Number: NCT02623205 URL: https://clinicaltrials.gov/ct2/show/NCT02623205.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873289PMC
http://dx.doi.org/10.1038/s41398-025-03292-9DOI Listing

Publication Analysis

Top Keywords

gaba glx
16
treatment response
12
antidepressant treatment
12
association pretreatment
8
major depressive
8
depressive disorder
8
glutamate glutamine
8
pretreatment gaba
8
bayes factor
8
pretreatment glx
8

Similar Publications

The ability to balance between being persistent versus flexible during cognitive control is referred to as "metacontrol" and reflected in the exponent of aperiodic neural activity. Theoretical considerations suggest that metacontrol is affected by the interplay of the GABAergic, glutamatergic, and catecholaminergic systems. Moreover, evidence suggests that fronto-striatal structures play an important role.

View Article and Find Full Text PDF

The Reciprocal Relationship Between Short- and Long-Term Motor Learning and Neurometabolites.

Hum Brain Mapp

March 2025

Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.

Skill acquisition requires practice to stimulate neuroplasticity. Changes in inhibitory and excitatory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glutamate, are believed to play a crucial role in promoting neuroplasticity. Magnetic resonance spectroscopy (MRS) at 3 T, using the MEGA-PRESS sequence, and behavioral data were collected from 62 volunteers.

View Article and Find Full Text PDF

Studies have shown gamma-amino-butyric acid (GABA) and Glx (a combination of glutamate and glutamine) to be altered in major depressive disorder (MDD). Using proton Magnetic Resonance Spectroscopy (H-MRS), this study aimed to determine whether lower pretreatment GABA and Glx levels in the medial frontal cortex, a region implicated in MDD pathophysiology, are associated with better antidepressant treatment response. Participants with MDD (N = 74) were antidepressant naïve or medication-free for at least three weeks before imaging.

View Article and Find Full Text PDF

Correlated and Anticorrelated Binocular Disparity Modulate GABA+ and Glutamate/glutamine Concentrations in the Human Visual Cortex.

eNeuro

February 2025

Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom, OX3 9DU,

Binocular disparity is used for perception and action in three dimensions. Neurons in the primary visual cortex respond to binocular disparity in random dot patterns, even when the contrast is inverted between eyes (false depth cue). In contrast, neurons in the ventral stream largely cease to respond to false depth cues.

View Article and Find Full Text PDF

The present study aimed to evaluate the association between concentrations of the metabolites gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx), which have predominantly inhibitory and excitatory effects on neural function, respectively, in adults with tinnitus and hearing loss, those with only hearing loss, and controls with neither condition. Metabolite concentrations in all three participant groups were assessed via magnetic resonance spectroscopic imaging in auditory and fronto-parietal regions. The concentration of a third metabolite, creatine (Cre) was also acquired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!