Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) provides relative protection against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity ofgranule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. In this study, we explored the sensitivity of hippocampal CA1 and medial prefrontal cortex (mPFC) pyramidal neurons to cranial irradiation and dose-rate modulation using electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase the length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in mPFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3 × 10 Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are relatively more radioresistant irrespective of radiation dose-rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872753PMC
http://dx.doi.org/10.1007/s00429-025-02902-yDOI Listing

Publication Analysis

Top Keywords

cell neurons
16
conventional dose-rate
8
confocal microscopy
8
dendritic complexity
8
synapse density
8
density ca1
8
granule cell
8
neurons
7
dose-rate
7
irradiation
5

Similar Publications

Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.

View Article and Find Full Text PDF

Phagocytosis-driven neurodegeneration through opposing roles of an ABC transporter in neurons and phagocytes.

Sci Adv

March 2025

Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Lipid homeostasis is critical to neuronal survival. ATP-binding cassette A (ABCA) proteins are lipid transporters associated with neurodegenerative diseases. How ABCA transporters regulate lipid homeostasis in neurodegeneration is an outstanding question.

View Article and Find Full Text PDF

Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, pannus formation, and progressive joint destruction. The inflammatory milieu in RA drives endothelial cell activation and upregulation of adhesion molecules, thus facilitating leukocyte infiltration into the synovium. Reelin, a circulating glycoprotein previously implicated in endothelial activation and leukocyte recruitment in diseases such as atherosclerosis and multiple sclerosis, has emerged as a potential upstream regulator of these processes.

View Article and Find Full Text PDF

SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.

Biochem Genet

March 2025

Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.

Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!