A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation of AMPK by metformin inhibits dedifferentiation of PDGF-BB-induced vascular smooth muscle cells to improve arterial remodeling in cirrhotic portal hypertension. | LitMetric

Background & Aims: Portal hypertension (PHT) is the potentially deadly complication of liver cirrhosis. Intrahepatic vascular resistance and the splanchnic hyperdynamic circulation are two principal driving factors contributing to the maintenance and exacerbation of PHT. However, in the advanced stages of cirrhosis, the fibrotic process in the liver becomes irreversible, leading to persistent and intractable increases in intrahepatic vascular resistance. Arterial remodeling emerges as a crucial mechanism driving the hyperdynamic splanchnic circulation. Therefore, ameliorating the hyperdynamic splanchnic circulation has become an indispensable component of PHT therapeutic strategies.

Methods: Liver cirrhosis with PHT was induced in the rats by common bile duct ligation (BDL). Based on the transcriptomic sequencing of the mesenteric arteries, we investigated the effects and mechanisms of metformin on the arterial remodeling at different stages of cirrhosis. We further validated potential molecular mechanisms through in vitro experiments using the A7r5 smooth muscle cell line and primary vascular smooth muscle cells (VSMCs).

Results: Our findings revealed the beneficial effects of metformin on liver cirrhosis and PHT in rats following bile duct ligation (BDL) for 4 and 6 weeks. Metformin was observed to ameliorate PHT and splanchnic hyperdynamic circulation in BDL rats, even in the advanced stages of liver cirrhosis. This effect was evidenced by reduced portal pressure (PP) and cardiac output (CO), decreased SMA flow, accompanied by improvements in systemic vascular resistance (SVR) and SMA resistance. Moreover, chronic inflammation in BDL rats was alleviated by metformin, which might inhibit the driving factors of angiogenesis and arterial remodeling. Notably, SMA dilation and arterial remodeling in BDL rats were potent alleviated following metformin treatment. Metformin ameliorated arterial remodeling in BDL rats by inhibiting the dedifferentiation of contractile VSMCs, resulting in the upregulation of contractile protein expressions such as α-SMA and SM22α. PDGF-BB/PDGFR-β signaling exerted crucial roles in regulating the VSMCs cell phenotype. Activation of AMPK by metformin blocked the downstream pathway of PDGF-BB/PDGFRβ. Furthermore, in vitro cell experiments, VSMCs were respectively treated with AMPK activator metformin or AMPK inhibitor Compound C. We revealed the molecular mechanism that metformin inhibited the phenotypic switching of A7r5 cells induced by PDGF-BB and primary VSMCs from BDL rats, which was mediated by activating AMPK to enhance the expression of contractile protein α-SMA. These findings suggest that AMPK can ameliorate the progression of arterial remodeling during PHT via suppressing the PDGF-BB/PDGFRβ signaling pathway, thereby offering novel insights into seek PHT treatment approaches.

Conclusions: Our findings revealed that metformin exerts its effects by activating the AMPK pathway, inhibiting the dedifferentiation of contractile VSMCs in the splanchnic arteries, and improving arterial remodeling, thereby ameliorating PHT and splanchnic hyperdynamic circulation in cirrhotic rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmgh.2025.101487DOI Listing

Publication Analysis

Top Keywords

arterial remodeling
32
bdl rats
20
liver cirrhosis
16
smooth muscle
12
vascular resistance
12
splanchnic hyperdynamic
12
hyperdynamic circulation
12
metformin
11
pht
9
activation ampk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!