A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Knockout of cadmium sensitive gene 1 confers enhanced cadmium tolerance in rice (Oryza sativa L.) by regulating the subcellular distribution of cadmium. | LitMetric

Cadmium (Cd) is a heavy metal which is toxic to both plants and animal. The high content of Cd in the rice grain severely threatens human's health. Here, we identified a Cd sensitive gene, named Cadmium Sensitive Gene 1 (OsCSG1), playing an important role in improving Cd tolerance in rice at seedling stage. The expression of OsCSG1 was induced by CdCl and exhibited higher mRNA levels in leaf blade, leaf sheath and stele of roots. Knockout of OsCSG1 improved the Cd tolerance of rice seedlings, suggesting that OsCSG1 negatively regulated Cd tolerance in rice. The Cd concentration in roots of seedling of oscsg1 mutants increased significantly under Cd stress, but not in the shoot and grains compared with wild type (WT). Subcellular distribution of Cd in root cells suggested that Cd proportions in soluble fractions of cells in oscsg1 mutant increased significantly. And CAT activity in oscsg1 mutants increased significantly. Taken together, knocking out OsCSG1 could improve Cd tolerance in rice by regulating subcellular distribution of cadmium and increased CAT activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141604DOI Listing

Publication Analysis

Top Keywords

tolerance rice
20
sensitive gene
12
subcellular distribution
12
cadmium sensitive
8
regulating subcellular
8
distribution cadmium
8
oscsg1
8
oscsg1 mutants
8
mutants increased
8
increased cat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!