Bi-magnolignan (BM), a novel compound isolated from Magnolia Officinalis leaves, exhibits significant anti-tumor activity in vitro. However, the underlying mechanism remains elusive. This study examines the anti-tumor properties of BM and its mechanism of action, specifically through its interaction with BRD4, a key regulator in oncogene transcription and genome stability. Molecular docking and biolayer interferometry assay (BLI) collectively demonstrate that BM exhibits strong binding affinity to the bromodomain (BD) region of BRD4. Cellular thermal shift assay (CETSA) results confirm that BM binding increases the thermostability of BRD4, providing further evidence of the interaction between BM and BRD4. RNA-seq analysis and western blotting reveal that BM abolishes the G2/M DNA damage checkpoint and disrupts homologous recombination (HR) repair mechanisms. To explore the downstream effects of BRD4, we performed gene set enrichment analysis (GSEA) using RNA-seq data. The results indicate that BM significantly inhibits BRD4 function, leading to the downregulation of various BRD4 target genes at the transcriptional level, including MYC. Importantly, overexpression of BRD4 rescues cells from BM-induced apoptosis, DNA damage, disrupted G2/M checkpoint, and HR deficiency (HRD), highlighting the specificity of BM for BRD4. Furthermore, in vivo experiments demonstrate that BM effectively suppresses tumor growth. Collectively, these findings underscore the potential of BM as a novel and potent BRD4 inhibitor, suggesting promising prospects for the development of targeted anti-tumor therapies that specifically inhibit BRD4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2025.116843DOI Listing

Publication Analysis

Top Keywords

brd4
12
dna damage
12
bi-magnolignan novel
8
brd4 inhibitor
8
apoptosis dna
8
interaction brd4
8
discovery bi-magnolignan
4
novel brd4
4
inhibitor inducing
4
inducing apoptosis
4

Similar Publications

Soft tissue sarcomas (STSs) are a group of rare cancers, among which nuclear protein in testis (NUT) sarcomas represent an ultra-rare subset driven by gene fusions. This article presents two unique cases of NUT sarcomas and conducts a comprehensive review of the literature to include an additional 61 cases. Our review reveals that NUT sarcoma exhibits a slightly higher incidence among women (male-to-female ratio of 1:1.

View Article and Find Full Text PDF

Palmitic acid alters enhancers/super-enhancers near inflammatory and efferocytosis-associated genes in human monocytes.

J Lipid Res

March 2025

Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA. Electronic address:

Free fatty acids like palmitic acid (PA) are elevated in obesity and diabetes and dysregulate monocyte and macrophage functions, contributing to enhanced inflammation in these cardiometabolic diseases. Epigenetic mechanisms regulating enhancer functions play key roles in inflammatory gene expression, but their role in PA-induced monocyte/macrophage dysfunction is unknown. We found that PA treatment altered the epigenetic landscape of enhancers and super-enhancers (SEs) in human monocytes.

View Article and Find Full Text PDF

Unlabelled: HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents.

View Article and Find Full Text PDF

DNA-encoded library (DEL) technology has become a powerful tool in modern drug discovery. Fully harnessing its potential requires the use of advanced computational methodologies, which are often available only through proprietary software. This limitation restricts flexibility and accessibility for academic researchers and small biotech companies, hindering the growth of the technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!