Darunavir inhibits dengue virus replication by targeting the hydrophobic pocket of the envelope protein.

Biochem Pharmacol

The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan. Electronic address:

Published: February 2025

Dengue viruses (DENV) pose significant health threats, with no approved antiviral drugs currently available, creating an urgent need for new therapies. This study screened FDA-approved drugs for their antiviral ability against DENV and identified three promising candidates: darunavir (DRV), domperidone, and tetracycline. DRV demonstrated the highest efficacy against three DENV serotypes, with half-maximal effective concentrations (EC50) below 1 µM, surpassing the performance of tetracycline and domperidone. It effectively blocked DENV envelope (E) protein attachment to two type cells with EC50 values less than 0.2 μM. Domperidone reduced DENV-2 attachment to TE671 cells (EC50 = 3.08 μM) but was less effective in BHK-21 cells, while tetracycline inhibited NS3 protease (IC50 = 1.12 μM). Among DRV's structurally related drugs, fosamprenavir (FPV) significantly reduced DENV infectivity and virus yield, with EC50 values below 0.5 µM. In vivo, DRV at 1, 2, and 5 mg/kg achieved 100 % survival in suckling mice, compared to 83.5 % with FPV. Real-time RT-PCR showed DRV more effectively reduced DENV-2 RNA in mouse brains than FPV. Molecular docking showed DRV and FPV bind tightly to the DENV-2 E protein's N-octyl-β-D-glucoside (βOG) hydrophobic pocket, with DRV forming stronger interactions than FPV. Chimeric DENV-2 single-round infectious particle tests confirmed DRV's effective targeting of this pocket, though mutations at K128, L198, Q200, I270, and T280 reduced its efficacy. These findings highlight DRV as a potent antiviral agent against DENV, targeting the E protein's βOG hydrophobic pocket, with the potential for rapid deployment in treating and preventing infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2025.116839DOI Listing

Publication Analysis

Top Keywords

hydrophobic pocket
12
envelope protein
8
ec50 values
8
reduced denv-2
8
βog hydrophobic
8
drv
7
denv
6
fpv
5
darunavir inhibits
4
inhibits dengue
4

Similar Publications

Heptachlor (HEP) is an insecticide metabolized by cytochrome P450 (CYP) enzymes in the human liver, resulting in the formation of heptachlor epoxide (HEPX). HEPX can persist in the human body for a long duration. Therefore, it can be extremely harmful.

View Article and Find Full Text PDF

Diaryl ureas (DU) are a cornerstone scaffold in organic and medicinal chemistry, celebrated for their unique structural attributes and broad range of biomedical applications. Their therapeutic reach has broadened beyond kinase inhibition in cancer therapy to encompass diverse mechanisms, including modulation of chromatin remodeling complexes, interference with developmental signaling pathways, and inhibition of stress-activated protein kinases in inflammatory disorders. A critical element in the rational design and optimization of DU-based therapeutics is a detailed understanding of their molecular recognition by target proteins.

View Article and Find Full Text PDF

Protein stability is a crucial characteristic that influences both protein activity and structure and plays a significant role in several diseases. Cu/Zn superoxide dismutase 1 (SOD1) mutations serve as a model for elucidating the destabilizing effects on protein folding and misfolding linked to the lethal neurological disease, amyotrophic lateral sclerosis (ALS). In the present study, we have examined the structure and dynamics of the SOD1 protein upon two ALS-associated point mutations at the surface (namely, E49K and R115G), which are located in metal-binding loop IV and Greek key loop VI, respectively.

View Article and Find Full Text PDF

NS309 (6,7-dichloro-1H-indole-2,3-dione-3-oxime) is widely used as a pharmacological tool to increase the activity of small- and intermediate-conductance calcium-activated potassium channels. NS309 is assumed to function as a positive allosteric gating modulator. However, its binding site and the molecular details of its action remain unknown.

View Article and Find Full Text PDF

Autophagy-associated protein 8 (ATG8) is essential for autophagy and organismal growth and development. In this study, we successfully resolved the crystal structure of () ATG8a (ATG8a) at 1.36 Å resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!