Oxygen-regulated enzymatic nanoplatform for synchronous intervention in glycolysis and oxidative phosphorylation to augment antitumor therapy.

J Control Release

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

Published: February 2025

Tumor cells typically undergo metabolic reprogramming to obtain substantial energy via glycolysis and oxidative phosphorylation (OXPHOS). Intervening in this reprogramming is expected to have therapeutic effects, but simultaneous intervention in these two metabolic pathways is challenging. Herein, we developed an "open-source and throttling" oxygen (O₂) modulation strategy by which we can simultaneously intervene in these two metabolic pathways. Our O₂ modulation nanoplatform (denoted as OAGO) is fabricated via the self-assembly of glucose oxidase (GOx) and oligomycin A (OA) and is coated with bacterial outer membrane vesicles (OMVs). OAGO elicits simultaneous GOx-mediated inhibition of glycolysis and OA-induced inhibition of OXPHOS. The resulting production of GOx-catalyzed hydrogen peroxide leads to oxidative stress, which exacerbates the inhibition of mitochondrial function. Meanwhile, OA reduces intratumoral O₂ consumption (i.e., the "throttling" strategy), and OMVs increase the tumor blood O₂ level (i.e., the "open-source" strategy). This results in an increase in O₂ levels for GOx catalysis, thereby exacerbating energy consumption. In addition, OMVs increase intratumoral OAGO accumulation and enable photothermal therapy in the 4T1 mouse model, which also raises the tumor blood O₂ level and benefits GOx catalysis. This synchronous intervention in two metabolic pathways alongside O₂ modulation constitutes a promising approach for efficient antitumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.113594DOI Listing

Publication Analysis

Top Keywords

metabolic pathways
12
o₂ modulation
12
synchronous intervention
8
glycolysis oxidative
8
oxidative phosphorylation
8
antitumor therapy
8
intervention metabolic
8
omvs increase
8
tumor blood
8
blood o₂
8

Similar Publications

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

The present study exami-ned bacteria that anaerobically degrade the aromatic compound, benzoate, and obtained enrichment cultures from marine sediments under illumination. The enrichment culture contained anoxygenic photosynthetic bacteria and non-photosynthetic bacteria. The photosynthetic strain PS1, a purple sulfur bacterium in the genus Marichromatium, was unable to utilize benzoate; however, when combined with the non-photosynthetic bacterial isolate, Marinobacterium sp.

View Article and Find Full Text PDF

Shared Pathophysiological Mechanisms and Genetic Factors in Early Menarche and Polycystic Ovary Syndrome.

J Neurosci

March 2025

Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil

Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders.

View Article and Find Full Text PDF

Metabolomic analysis suggests thiamine monophosphate as a potential marker for mesenchymal stem cell transplantation outcomes in patients with SLE.

Lupus Sci Med

March 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China

Objective: The objective of this research is to identify metabolic markers associated with successful treatment by evaluating the effect of mesenchymal stem cell transplantation (MSCT) on the metabolic profiles of patients with SLE.

Methods: Plasma samples were collected from 20 patients with SLE before and after MSCT. Principal component analysis (PCA) was used to distinguish pretreatment and post-treatment groups and pathway analysis for identifying involved metabolic pathways.

View Article and Find Full Text PDF

Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats.

Int J Biol Macromol

March 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!