Kidney transplantation is considered the benchmark treatment for end-stage kidney disease patients, yet the scarcity of suitable kidneys poses a significant hindrance for patients and healthcare providers. One approach is to extend the criteria for the use of kidneys from deceased brain death and deceased circulatory death donors. Use of these organs, especially from these extended criteria donors, is associated with ischemia reperfusion injury and resultant delayed graft function as well as increased rates of allograft rejection. To lessen these complications as well as increase the time of organ viability assessment, machine perfusion has been evaluated on recovered kidneys. In this study we examined the immunogenic molecular content of perfusates from discarded organs that had undergone Controlled Oxygenated Rewarming (COR). Perfusates were analyzed for extracellular vesicles (EVs), DNA (Deoxyribonucleic acid), and microRNAs. These perfusates were then pumped over a plasma separator containing a lectin affinity resin. Following treatment, a significant diminution in extracellular vesicles, dsDNA (double-stranded DNA) associated with EVs, and microRNAs (miRNA) were observed. Specifically, in three out of the four renal perfusates analyzed there was significant removal of small EVs (<200 nm) and vesicles loaded with dsDNA (p < 0.05). Notably, depletion of larger EVs (100-500 nm) was found to be significant in all treated perfusates (p < 0.01). NanoString analysis of miRNA found 5 species potentially involved in renal dysfunction (hsa-let 7a-5p, hsa-miR-148b-3p, hsa-miR-148a-3p, hsa-miR-29b-3pb and hsa-miR-99a5p) to be significantly depleted in treated renal perfusates (p ≤ 0.05). These results support a future study incorporating this treatment method into a dynamic machine perfusion circuit to explore if reduction of these mediators is associated with improved function of retrieved kidneys.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trim.2025.102215DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
lectin affinity
8
renal perfusates
8
controlled oxygenated
8
oxygenated rewarming
8
perfusates analyzed
8
perfusates
5
affinity plasmapheresis
4
plasmapheresis device
4
device removes
4

Similar Publications

Ovarian cancer (OC) is characterized by high mortality rates due to late diagnosis, recurrence, and metastasis. Here, we show that extracellular signaling molecules secreted by adipose-derived mesenchymal stem cells (ASCs) and OC cells-either in the conditioned medium (CM) or within small extracellular vesicles (sEVs)-modulate cellular responses and drive OC progression. ASC-derived sEVs and CM secretome promoted OC cell colony formation, invasion, and migration while upregulating tumor-associated signaling pathways, including TGFβ/Smad, p38MAPK/ERK1/2, Wnt/β-catenin, and MMP-9.

View Article and Find Full Text PDF

Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity.

View Article and Find Full Text PDF

Efficient Metabolomics Profiling from Plasma Extracellular Vesicles Enables Accurate Diagnosis of Early Gastric Cancer.

J Am Chem Soc

March 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Accurate diagnosis of early gastric cancer is valuable for asymptomatic populations, while current endoscopic examination combined with pathological tissue biopsy often encounters bottlenecks for early-stage cancer and causes pain to patients. Liquid biopsy shows promise for noninvasive diagnosis of early gastric cancer; however, it remains a challenge to achieve accurate diagnosis due to the lack of highly sensitive and specific biomarkers. Herein, we propose a protocol combining metabolomics profiling from plasma extracellular vesicles (EVs) and machine learning to identify the metabolomics discrepancies of early gastric cancer individuals from other populations.

View Article and Find Full Text PDF

Exosomal-complement system activation in preeclampsia.

J Obstet Gynaecol Res

March 2025

Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.

Aim: Preeclampsia (PE) is a severe pregnancy-related disorder characterized by hypertension and multi-organ failure, primarily affecting the maternal vasculature and placenta. The aim of this review is to explain the molecular mechanisms behind PE by investigating the relationship between exosome release and complement activation, which could provide insight into potential therapeutic targets.

Methods: This review analyzes existing literature on the role of the complement system and exosomes in the pathophysiology of PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!