Surround modulation is a fundamental property of V1 neurons, playing critical roles in stimulus integration and segregation. It is believed to be orientation-specific, as neurons' responses at preferred orientations are suppressed more by iso-oriented surrounds than by cross-oriented surrounds. Here, we investigated an alternative hypothesis that surround modulation is primarily orientation-unspecific, in that the observed "orientation-specific" surround effects actually reflect overall gain changes that affect neurons tuned to all orientations. We employed two-photon calcium imaging to compare V1 population orientation tuning functions under iso- and cross-surround modulation in awake, fixating macaques. While confirming "orientation-specific" surround suppression in individual neurons, our analysis of the population orientation tuning functions revealed that iso-surrounds induce a general orientation-unspecific suppression across all orientation-tuned neurons, plus weak orientation-specific suppression to neurons tuned to the center stimulus orientation. Furthermore, cross-surrounds mainly reduce orientation-unspecific suppression by scaling up responses of all orientation-tuned neurons. These findings suggest a model of population gain control where surround stimuli mostly scale the responses of the neuronal population. Further population coding analyses supported this conclusion, demonstrating that surround suppression leads to degraded target orientation information at least partially due to a reduced number of contributing neurons with diverse orientation preferences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2025.102745 | DOI Listing |
Int J Mol Sci
February 2025
School of Basic Medicine, Kunming Medical University, Kunming 650500, China.
Among all stroke types, ischemic stroke (IS) occurs most frequently, resulting in neuronal death and tissue injury within both the central infarct region and surrounding areas. This study explored the neuroprotective mechanisms of scutellarin, a flavonoid compound, through an integrated strategy that merged in silico analyses (including network pharmacology and molecular docking simulations) with both in vitro and in vivo experimental verification. We identified 1887 IS-related targets and 129 scutellarin targets, with 23 overlapping targets.
View Article and Find Full Text PDFJ Chem Ecol
March 2025
Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX, 78712, USA.
In poison frogs (Dendrobatidae), conspicuous colors have evolved repeatedly in tandem with high numbers and quantities of skin toxins (alkaloids). Here, we focus on an inconspicuously-colored species-Silverstoneia flotator-which has long been deemed toxin-free and thought to forage opportunistically on mites and ants. Both assumptions have received some empirical support, but there is also evidence that predators avoid S.
View Article and Find Full Text PDFClin Neurophysiol
March 2025
Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.
Objective: This study aimed to assess the effects of focal brain cooling (FBC) on human brain tissue through use of multiple sensing techniques by monitoring cerebrovascular activity and brain temperature.
Methods: Intraoperative brain activity monitoring using a multimodality probe capable of measuring brain temperature, electrocorticography (ECoG) and changes in cerebral hemoglobin concentration was performed in 13 patients with refractory epilepsy. Brain temperature and neurovascular activity were measured beneath and surrounding the FBC device.
ACS Nano
March 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.
View Article and Find Full Text PDFAging Dis
February 2025
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!