Unlocking the secrets of single extracellular vesicles by cutting-edge technologies.

Pathol Res Pract

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea. Electronic address:

Published: February 2025

Extracellular vesicles (EVs), isolated through techniques such as liquid biopsy, have emerged as crucial biomarkers in various diseases, including cancer. EVs were dismissed initially as cellular debris, EVs are now recognized for their role in intercellular communication, carrying proteins, RNAs, and other molecules between cells. Their stability in biofluids and ability to mirror their parent cells' molecular composition make them attractive candidates for non-invasive diagnostics. EVs, including microvesicles and exosomes, contribute to immune modulation and cancer progression, presenting both therapeutic challenges and opportunities. However, despite advances in analytical techniques like high-resolution microscopy and nanoparticle tracking analysis (NTA), standardization in EV isolation and characterization remains a hurdle. Cutting-edge technologies, such as atomic force microscopy and Raman tweezers microspectroscopy, have enhanced our understanding of single EVs, yet issues like low throughput and high technical complexity limit their widespread application. Other technologies like transmission electron microscopy, cryogenic transmission electron microscopy, super-resolution microscopy, direct stochastic optical reconstruction microscopy, single-molecule localization microscopy, tunable resistive pulse sensing, single-particle interferometric reflectance imaging sensor, flow cytometry, droplet digital analysis, total internal reflection fluorescence also contribute to EV analysis. Future research must focus on improving detection methods, developing novel analytical platforms, and integrating artificial intelligence to enhance the specificity of EV characterization. The future of EV research holds promise for breakthroughs in precision medicine, with a collaborative effort needed to translate these advancements into clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2025.155878DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
cutting-edge technologies
8
transmission electron
8
electron microscopy
8
microscopy
7
evs
5
unlocking secrets
4
secrets single
4
single extracellular
4
vesicles cutting-edge
4

Similar Publications

U6 small nuclear RNA (U6 snRNA), a critical spliceosome component primarily found in the nucleus, plays a vital role in RNA splicing. Our previous study, using the simian immunodeficiency virus (SIV) macaque model, revealed an increase of U6 snRNA in plasma extracellular vesicles (EVs) in acute retroviral infection. Given the limited understanding of U6 snRNA dynamics across cells and EVs, particularly in SIV infection, this research explores U6 snRNA trafficking and its association with splicing proteins in the nucleus, cytoplasm, and EVs.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by transporting functional molecules between donor cells and recipient cells, thereby regulating biological processes, such as immune responses. miR-451a, an immune regulatory microRNA, is highly abundant in circulating EVs; however, its precise physiological significance remains to be fully elucidated. Here, we demonstrate that miR-451a deficiency exacerbates delayed-type hypersensitivity (DTH) in mice.

View Article and Find Full Text PDF

Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes.

Cell Mol Neurobiol

March 2025

Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.

Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators.

View Article and Find Full Text PDF

Ovarian cancer (OC) is characterized by high mortality rates due to late diagnosis, recurrence, and metastasis. Here, we show that extracellular signaling molecules secreted by adipose-derived mesenchymal stem cells (ASCs) and OC cells-either in the conditioned medium (CM) or within small extracellular vesicles (sEVs)-modulate cellular responses and drive OC progression. ASC-derived sEVs and CM secretome promoted OC cell colony formation, invasion, and migration while upregulating tumor-associated signaling pathways, including TGFβ/Smad, p38MAPK/ERK1/2, Wnt/β-catenin, and MMP-9.

View Article and Find Full Text PDF

Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!