Spinal tumors, although rare, pose significant challenges in diagnosis and treatment due to their complex biological behavior and the variety of tumor types involved. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as critical regulators of gene expression and play dual roles as oncogenes or tumor suppressors, depending on their target genes. This review comprehensively examines the role of miRNAs in the pathogenesis and progression of common spinal tumors, including ependymoma, astrocytoma, meningioma, and metastasis, based on existing studies using both human and in vitro models. Several miRNAs have been identified as dysregulated in these tumor types, influencing key cellular processes such as proliferation, migration, and apoptosis. The potential of miRNAs as diagnostic, prognostic, and therapeutic biomarkers is explored, highlighting their value in guiding personalized treatment approaches. Although promising, these findings require further validation to fully understand miRNA-mediated mechanisms and translate these insights into clinical applications. MiRNA-targeted therapies offer a promising avenue for improving patient outcomes in spinal tumor management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cancergen.2025.02.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!