Glacier retreat in northern latitudes exposes new landscapes that may develop soils and ecosystems, which in turn may sequester carbon and serve as a negative climate change feedback. Proglacial soil development and landscape evolution were investigated using transects from three high-latitude glacial systems (Tarfala, Sweden; Vatnajökull, Iceland; Zackenberg, Greenland). Soil samples were analysed for organic carbon (OC) concentration, bacteriohopanepolyol biomarkers (BHPs, membrane lipids that trace major microbial groups), and 16S rRNA gene sequencing. Soil and sediment samples from Sweden showed lower OC concentrations (0.27 ± 0.26 wt%) than deposits from Iceland (1.59 ± 2.12 wt%) and Greenland (1.62 ± 1.54 wt%). Highest OC concentrations were from moraines exposed for several millennia, while recently deglaciated areas in Sweden and Iceland had the lowest OC values. Higher fractional abundance of soil-specific BHPs down-valley (up to 30 % in Greenland), and matching increases in the R' index (up to 0.37 in Greenland), suggest soils are gradually developing in recently deglaciated areas, with a stable soil microbial community observed in some soils from Iceland and Greenland. Microbial communities stabilized quickly, adapting to the new environment. Acidobacteria, Actinobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Verrucomicrobia were the most relatively abundant phyla identified in deglaciated areas, while candidate phylum Dormibacteraeota had high concentrations in samples from Sweden. Linking organic biomarkers with bacterial communities suggests that soil-marker BHPs were produced by Rhodospirillaceae and may have been produced by Bradyrhizobiaceae and Hyphomicrobiaceae. However, despite some similarities in microbial communities, differences in soil development suggest that the evolution of deglaciating landscapes and their impact on the global carbon cycle may vary substantially.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.178723 | DOI Listing |
Sci Total Environ
March 2025
Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
Glacier retreat in northern latitudes exposes new landscapes that may develop soils and ecosystems, which in turn may sequester carbon and serve as a negative climate change feedback. Proglacial soil development and landscape evolution were investigated using transects from three high-latitude glacial systems (Tarfala, Sweden; Vatnajökull, Iceland; Zackenberg, Greenland). Soil samples were analysed for organic carbon (OC) concentration, bacteriohopanepolyol biomarkers (BHPs, membrane lipids that trace major microbial groups), and 16S rRNA gene sequencing.
View Article and Find Full Text PDFSci Total Environ
March 2025
Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain.
Since the Little Ice Age, the deglaciation of the Maladeta massif (Central Pyrenees) has been almost continuous; since then, the glaciated surface has been reduced by 87.9 % until 2021. This deglaciation has led to an increase in proglacial areas, allowing the development of new habitats.
View Article and Find Full Text PDFAbstractDespite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy, both contemporarily and in ancestral branches of the tree of life, suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids may more easily colonize novel habitats, such as deglaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost, as deleterious mutations may fix rapidly on the expansion front.
View Article and Find Full Text PDFSci Total Environ
February 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China; Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province, China. Electronic address:
The release of pathogens and DNA from the cryosphere (glacier, permafrost, and, sea ice) has become a new threat to society and environment. Due to enhanced glacier retreat, the size of glacier forefields has greatly expanded. Herein, we used a combination of metagenomic and metatranscriptomic methods and adopted a sequence-based approach to investigate the distribution and changing patterns of virulence factor genes (VFGs) and antibiotic resistance genes (ARGs) in two glacier forefields.
View Article and Find Full Text PDFiScience
December 2024
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic.
Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!